Electrochemical Reduction for trans-Complexes of Cobalt (III) with Bis(ethylenediamine) and Monodendate Ligands

한자리 리간드를 포함하는 트란스비스 (에틸렌디아민) 코발트 (III) 이온의 전극 환원반응

  • Jung-Ui Hwang (Department of Chemistry, Kyungpook National University) ;
  • Jong-Jae Chung (Department of Chemistry, Kyungpook National University) ;
  • Jae-Duck Lee (Department of Chemistry, Dong-A University)
  • 황정의 (경북대학교 자연과학대학 화학과) ;
  • 정종재 (경북대학교 자연과학대학 화학과) ;
  • 이재덕 (동아대학교 자연과학대학 화학과)
  • Published : 1989.04.20

Abstract

Electrochemical reductions of $trans-[Co(en)_2X_2](ClO_4)_n$ (where X is cyanide, nitrite, ammonia, and isothiocyanate) were investigated by cyclic voltammetry and polarography at mercury and glassy carbon electrode. $trans-[Co(en)_2(CN)_2]ClO_4$ was reduced to Co(II) complex followed by adsorption to the mercury electrode. Cyanide ion was not released from the reduced Co(II) complex but the cyanide and (en) were released after the reduction to metallic cobalt. The other complexes except $trans-[Co(en)_2(CN)_2]ClO_4$ were reduced to cobalt(II) complexes followed by release of monodendate ligand, and (en) was released at the reduction step to metallic cobalt. $trans-[Co(en)_2(NO_2)_2]ClO_4$ was reduced to cobalt(Ⅱ) complex, and $NO_2^-$ ion was released followed by electroreduction through ECE mechanism at pH 2. On glassy carbon electrode, all complexes of Co(III) were reduced to Co(II) complexes with irreversible one-electron diffusion controlled reaction in which (en) was not released at this step. Increasing absorption wave number of complexes caused to negative shift of peak potential.

$trans-[Co(en)_2X_2](ClO_4)_n$의 전극환원 반응메카니즘(X : 시아나이드, 나이트라이트, 암모니아, 그리고 이소티오시아네이트)을 순환전압전류법 및 폴라로그래피법으로 조사하였다. 수은전극일 때 Co(III)상태에서 Co(II) 상태로 되는 확산지배적인 1전자 비가역반응 이후에 착물의 분광화학적 흡수파가 큰 시아나이드가 배위된 착물은 (en), CN-가 해리되지 않았으며 전극반응 생성물이 전극에 흡착되었고, $NO_2\;^-,\;NH_3$는 해리되었다. 그 후 모든 Co(II) 착물상태가 금속상태로 2전자 비가역 과정으로 환원되면서 (en)이 해리되었다. 수은전극에서 $NO_2^-$가 배위된 착물은 ECE 반응기구이며 전극환원 후 $NO_2^-$가 해리되는 속도가 57${\sim}$100m sec 이상으로 측정되었다. 탄소전극일 때 이들 착물의 첫단계 환원은 확산지배적인 1전자 비가역 과정이며 분광학적 흡수파수가 증가할 때 환원 피이크전위$(-E_p)$가 증가하였다.

Keywords

References

  1. Collection Czechoslov chem. Comm. v.2 no.489 R. Brdicka
  2. Collection Czechoslov chem. Comm. v.2 R. Brdicka
  3. Electrochim. Acta. v.15 J. N. Gauer;N. K. Goswami
  4. Polarograpic Technique L. Meites
  5. J. Am. Chem. Soc. v.70 H. A. Laitinen;J. C. Bailar, Jr.;H. F. Holtzclaw, Jr.
  6. J. Am. Chem. Soc. v.75 H. A. Laitinen;J. Frank;P. Kivalo
  7. J. Electroanal. Chem. v.22 H. Bartelt;S. Landazury
  8. J. Am. Chem. Soc. v.74 K. H. Gayer;L. Woother
  9. J. Am. Chem. Soc. v.77 P. Kivalo
  10. J. Electrochim. Chem. v.22 H. Bartely;S. Landazury
  11. Electrochim. Acta. v.16 H. Bartelt
  12. J. Am. Chem. Soc. v.67 J. B. Willis;J. A. Friend;D. P. Mellor
  13. Bull. Chem. Soc. Japan. v.32 N. Maki;Y. Shimura;R. Tsuchida
  14. J. Am. Chem. Soc. v.75 H. F. Holtzclaw, Jr.;D. P. Sheetz
  15. Electrochim. Acta. v.21 K. Zutshi;B. Chakraborty
  16. Discuss. Farad. Soc. v.26 A. A. Vlcek
  17. Advances in the Chemistry of the Coordination Compounds A. A. Vlcek;S. Kirshner(ed.)
  18. Bull. Chem. Soc. Japan. v.44 Y. Hohokabe;N. Yamazaki
  19. Bull. Chem. Soc. Japan. v.41 M. Muto;T. Baba;H. Yoneda
  20. Inorganic Synthesis v.4 H. F. Holtzclaw;Jr.;D. P. Sheetz;B. D. McCarrty
  21. Ann. v.351 A. Werner
  22. Infrared and Raman Specta of Inorganic and Coordination K. Nakamoto
  23. J. Am. Chem. Soc. v.79 I. M. Kolthoff;J. F. Coetzee
  24. Polarographic Technigues L. Meites
  25. Anal. Chem. v.39 R. H. Wopschall;I. Shain
  26. Analytical Instrument Division, Application Brief N-1 Princeton Applied Research
  27. Polarography I. M. Kolthoff;J. J. Lingane
  28. J. Am. Chem. Soc. v.76 A. W. Adamson;R. G. Wilkins
  29. J. Am. Chem. Soc. v.79 P. Delahay;I. Trachtenberg
  30. J. Electroanal. Chem. v.4 H. W. Nurnberg;M. Von Stackelberg
  31. Anal. Chem. v.37 H. E. Zittel;F. J. Miller
  32. Anal. Chem. v.36 R. S. Nicholson;I. Shain
  33. J. Am. Chem. Soc. v.102 R. J. Klingler;J. K. Kochi