DAEHAN HWAHAK HWOEJEE (Journal of the Korean Chemical Society) Vol. 33, No. 1, 1989 Printed in the Republic of Korea

염화산화란탄에서 유로퓸(III)과 테르븀(III)의 형광에 관한 연구

河英亀1金太三1

서울대학교 자연과학대학 화학과

한국동력자원연구소

(1988, 7, 23 접수)

Studies on the Fluorescence of Eu³⁺ and Tb³⁺ in Lanthanum Oxychloride

Young Gu Hat and Taesam Kim*

Department of Chemistry, Seoul National University, Seoul 151-742, Korea *Korea Institute of Energy and Resoures, Seoul 152-020, Korea (Received July 23, 1988)

요 약. 염화산화란탄(LaOCl) 결정속에서 La와 치환된 Eu³⁺와 Tb³⁺의 형광성질을 연구하였다. 자의 선으로 들뜬 LaOCl의 형광섀기를 활성제인 Eu³⁺와 Tb³⁺의 농도에 따라 고찰하였고, 이 현상을 활성재 들 사이의 에너지전달 과정으로 설명하였다. LaOCl 결정속에 Eu³⁺와 Tb³⁺를 같이 분포시키면 흡수된 에너지가 Tb³⁺에서 Eu³⁺로 전달됨을 보았다. 치환된 활성제의 양에 따른 형광세기의 변화와 쇄잔시간 의 측정으로부터 이 사실을 확인하였다.

ABSTRACT. The fluorescence of Eu^{3^+} , Tb^{3^+} substituted for La^{3^+} in Lanthanum Oxychloride (LaOCI) has been studied. The fluorescence intensity of the Eu^{3^+} , Tb^{3^+} in LaOCI excited by Ultra-violet light were investigated on its activator concentration and discussed as the energy transfer process. The energy transfer from Tb^{3^+} to Eu^{3^+} take place in the Eu^{3^+} and Tb^{3^+} codoped LaOCI crystal. This process was confirmed to the change of concentration and the measurement of fluorescence decay time.

서 뽄

여러 연구¹⁻⁻에 의하면 란탄족 3가이온의 방 출세기는 결합의 특성, 결정구조 그리고 원소들 의 농도와 들뜬상태에 따라 달라지는 것으로 알려져 있고 산화물에서는 특히 결정구조의 결 함에 의해 형광의 세기가 크게 영향을 받는다 고 하였다. 입자결정(host crystal)과 그 속에 포함된 불순물 때문에 에너지 변환의 경쟁상대 가 생기게 되고 불순물들이 있고,없음에 따라 형광의 세기가 달라지는 것이다. 이러한 현상은 발광에 관계하는 원소들 사이에 에너지 전달이 있기 때문으로서 한 원소에서 흡수한 에너지를 다른 원소로 전달해버려 발광세기가 감소하거 나, 다른 원소에서 흡수한 에너지를 전달 받아 서 발광세기가 증가하는 상호작용으로 생각되고 있다. 이러한 에너지 전달작용으로 크게 복사 (radiative) 전달과정과 비복사(nonradiative) 전 달과정으로 나눌 수 있다. 그 중에서 복사 전 달과정은 대부분의 원소가 가지는 방출억제현상 의 설명애 적합하지 못하다."

Dexter^{*} 등은 애너지 전달에 관하여 많은 연 구를 하였다. "중감된(Sensitized) 발광"은 이들 애 의해 설명된 모델이며, 에너지 주게(donor) 인 증감제(sensitizer)와 에너지 받게 (acceptor) 인 활성제(activator)로 구분하여 설명되었다. 란탄족 원소가 결정속에 포함되면 이들이 중감 제나 활성제로 작용하여 빛을 흡수하고 방출하 게 되며, 여기에서 보이는 많은 현상들이 에너 지 전달과정으로 설명되었다.

X is excited level, vertical line is nonradiativ process, $\sim \sim \cdot$ is phonon transfer. (a) multipolar resonance. (b) multipolar transfer. (c) nonresonance transfer.

애너지 전달에는 결정을 이루는 물질과 복사 선(radiation), 그리고 포논(phonon)이 함께 작 용하여 간단한 모델로 설명하기는 부족하지만 일차적으로 에너지 전달에 크게 영향을 주는 요인은 그 원자의 파동함수이므로 전기쌍극자 자기쌍극자 그리고 사중극사(quadrapole)들의 상호작용과 교환작용¹⁶ 으로 대부분의 실험사실 들이 설명되고 있다.

다중국자의 상호작용에 의한 얘너지 전달은 다음 세가자로 분류된다(Fig. 1).

두 이온의 얘너지 상태가 일치할 때 multipolar resonance에 의해 에너지가 전달되고, 이때 의 에너지 전달은 가역적(reversible)이며, 에너 지 전달얘 필요한 시간이 전달에 관여한 들뜬 상태의 수명(life time)보다 짧아아 가능하다.

multipolar transfer에서는 에너지가 전달되는 시간에 비해, 얘너지를 주는 이온의 마지막 에 너지 준위의 수명이 짧을때 비가역적으로 에너 지가 전될된다. 낮은 위치에 있는 두번째 이온 의 에너지 준위로 에너지가 옮겨지고 나서 여 분의 에너지는 다른 작용기구(mechanism)에 의 해 방출된다.¹⁰

multipolar resonance와 multipolar transfer는 작용하는 아온의 농도에 크게 의존하고 nonresonance transfer는 임자결정 물질에 관계되며 이러한 다중극자 상호작용은 20 A 이상 떨어져 있는 원자에도 영향을 준다고 알려져 있다.^{11,12} 이러한 상호작용으로 말미암아 결정속얘 포함 된 란탄족 원소들이 에너지를 주고 받을 수 있 는 임계농도 이상이 되면 거리가 가까와져서 서로 영향을 주재 되므로, 방출되는 형광의 세 기가 농도에 비해하지 않게 된다. 형광의 효율 은 활성재에 의해 흡수된 광자수와 방출된 광 자수의 비율로 정의되는데, 결정에 내포된 홈 (defect)이나 비발광 중심에서 흡수되는 과정이 없다면, 그리고 활성제들 사이에 상호작용이 전 혀 없다면 형광효율은 활성재의 농도에 무관한 값이어야 한다. 그러나 활성재의 농도가 진한 상황에서는 농도의 증가에 따라 효율이 감소한 다. 한계농도 이상에서 효율이 감소하는 현상을 농도 소광이라 하며 그 이유는 대부분 다음과 같이 설명된다.

활성제의 농도가 충분히 진하면 에너지 전달 의 확률이 방출확률보다 훨씬 커지게 되고 들 뜨기 에너지는 결정격자내를 두루 이동하게 된 다. 그런데 임자결정은 완전한 구조를 갖지 않 아서 결정속에는 격자의 어긋남(dislocation) 또 는 불순물이 들어 있으며 들뜨기 에너지의 일부를 잃게되고 따라서 활성제의 농도가 중가함에도 불구하고 효율이 감소하게 되는 것이다.¹³

활성제가 란탄족 원소인 형광물질에 대해서는 많은 연구가 이루어졌다. 란탄족 원소들은 서로 유사한 화학적 성질을 가지고 있어서 형광을 내는 원소들이 결정격자와 잘 치환될 수 있고 이를 이용하면 화학적 조성이 확실한 모델화함 물을 만들기 쉽다.¹⁴⁻⁷²

고체 랙이저 중에서 가장 보편적으로 쓰이는 레이저 물질인 Nd:YAG는 투명한 Y₃Al₅O₁₂(Yittrium Aluminum Garnet)에 네오더늄(Nd)을 Y와 1% 치환시킨 것으로, 란탄족 원소가 이트륨(Y) 과 치환될때 Y와 Nd는 같은 3가 양이온으로 전 하의 보상(charge compensation)이 필요없고, 이온의 크기가 비슷하여 균일하게 분포하며, 선 명한 스펙트럼을 얻을 수 있기 때문에 레이저 물질로 선택된 것이다.²¹

본 연구에 사용된 LaOCl은 결정구조가 간단 하고 제조하기 쉬워서 다른 란탄족 원소를 쉽

83

게 치환시킬 수 있기 때문애, 형광물질의 연구 에 많이 이용되었다. 그러나 란탄족 원소의 들 뜬 상태중 가장 낮은 에너지 준위(Lowest excited state)에서 나오는 방출을 측정하여 전이의 허용과 금지에 대한 연구만 있을 뿐이다.²⁴²⁵

또 Tb³⁺→Eu³⁺ 에너지 전달도 (Ca(PO₃)₂) Glass에서 그 가능성을 제시하고 있으나²⁶ 어떤 상태에서 얼마나 전달되는지 구체적인 연구가 없었다.

본 연구에서는 LaOCI 결정속에 Eu³⁺와 Tb³⁺ 를 La³⁺와 치환시켜 치환된 양과 형광의 세기와 의 관계를 에너지 전달과정을 통하여 알아보고, 또 Eu³⁺와 Tb³⁺가 같이 분포되어 있을때 서로 상호작용하여 에너지가 전달되는 현상을 농도변 화의 쇄잔시간(decay time) 측정을 통하여 알아 보았다.

실 험

시료의 제조, 본 연구에 사용된 염화산화란 탄 치환제(LaLn) OCI을 제조하기 위하여 란탄 족 산화물인 La₂O₃, Eu₂O₈ Tb₂O₃(99,9%, Aldrich)를 정확히 무게를 달아서, 진한 염산에 녹 여 각각의 염화물 용액을 만들었다.

양이온의 비율이 다음과 같이 유지되도록 계 산된 양만큼의 염화물 용액을 뽑아내어 섞었다.

(a) Eu^{3*}으로 활성된 LaOCI

(La_{1.x} Eu_x) OCI. $x = 0.001 \sim 0.1$

- (b) Tb³⁺으로 활성된 LaOCI (La_{1x} Tb_y) OCI. x=0.001~0.1
- (c) Eu³⁺과 Tb³⁺으로 활성된 LaOCI (La_{tay} Eu, Tb₂)OCl *x*+*y*=0.001~0.1

야 혼합물들을 마를때까지 증발시킨 다음 500 ℃에서 3시간 동안 태웠다.

 $\begin{array}{c} HCl \\ La_2O_3 \xrightarrow{} LaCl_3 \cdot nH_2O \xrightarrow{} LaOCl \end{array}$

이렇게 만들어진 시료들은 분만 X-선 회절 법으로 확인하였는데 ASTM표준과 비교하여 치 환제도 LaOCl 구조를 유지하고 있음을 확인하 였다.

스펙트럼 축정, 모든 스펙트럼은 상온에서 측정하였고 150W Xenon 램프가 부착된 FAR- RAND Spectrofluorometer의 모델 MK-1을 사용 하였다. 고채시료들의 형광스펙트럼을 얻기 위 하여 고체시료 흘더룰 부착하였다.

시료는 슬라이드 유리판에 입혀 스펙트럼을 측정하였다. 얻은 스펙트럼신호 중애는 단색화 장치로부터 나오는 산랑광과 그 2차 회절광을 포함하고 있으며 이 신호들은 시료로부터 나오 는 형광에 비해 매우 센 신호였다. 본 연구에 서는 시료의 표면을 입사광과 135°의 각을 이루 도록 설치하여 형광을 측정하였는데, 이때 단색 화 장치로부터 나오는 산란광 및 회절광은 시 료표면에서 검출부와 반대방향으로 대부분 반사 되므로, 전 영역을 2차 회절광에 방해받지 않 고 스펙트럼을 측정할 수 있었다.

특정한 둘뜬 상태로부터 방출되는 빛이 어느 준위에 해당하는지를 결정하기 위하여 단색화된 빛의 과장을 바꾸어가면서 들뜨게 하였는데, 방 출되는 형광은 Eu³⁺, Tb³⁺ 둘다 가시광선 영역 에서만 측정하였다. 시료에 따라 방출의 세기차 이를 측정할 때에는 시료표면을 입사광과 45°를 이루도록 설치하여 (*Fig.* 2) 가장 센 형광을 방 출하는 스펙트립의 높이를 재어서 비교하였는 데, Eu³⁺에서는 ⁵D₀→⁷F₂의 610nm 방출세기로 비교하였는데 Tb³⁺에서는 ⁵D₄→⁷D₅의 544nm 방 출세기로 비교하였다.

쇄잔시간의 측정. 쇄잔시간 측정은 같은 형 광 분광기를 사용하고 광원과 1차 단색화장치 사이에 간격이 2mm의 구명이 뚫린 원판을 분

Fig. 2. Experimental system and sample mounting.

Fig. 3. The unit cell of LaOCl. a=4.199 Å, c=6.883 Å.

당 10,000 화전의 속도로 회전시켜 빛의 통로를 개폐하였다. 이렇게 만들어진 빛 펄스(pulse)는 삼각파이며 중간간격(half width)이 0.1msec의 간격을 가지고 있고 펄스당 간격은 6msec 이므 로 고유쇄잔시간이 2~3msec인 Tb³⁺, Eu³⁺의 쇄산시간을 측정하는데 충분하였다.

광 중식관(PM tube)에서 발생된 신호는 Hewlett-Packard사의 모델 1223 A 오실로스코우프 에 연결하고 같은 회사의 포라로이드 카메라를 설치하여 촬영하였다.

결과 및 논의

Eu³⁺의 형광스펙트럼. 본 연구에 사용된 입 차결정(host)인 LaOCI은 PbFCl 구조를 가지고 있으며 단위격자에 원자들이 배치된 모습을 Fig. 3에 나타내었다. 이 결정속에서 La의 위치 에 다른 란탄족 원소가 치환되어 활성제로 작 용하게 되는데 La 또는 치환된 란탄족 원소의 한쪽은 O²⁻ 이온으로, 다른 한쪽은 Cl⁻ 이온으 로 둘러 싸여 있다.

활성재를 아무것도 넣지않은 LaCOI은 자외선 이나 가시광선을 흡수하지 않으며 물론 발광도 보이지 않았다(*Fig.* 4). 여기에 소량의 활성제 Eu³⁺이 결정 격자속에 치환되어 들어가면 자외 선 영역에서 흡수를 하며 붉은색의 형광 방출 을 보였다(*Fig.* 5).

LaOCI의 결정속에 위치한 Eu³⁺의 둘뜬 상태

Fig. 4. The LaOCI host emission, incident light is UV (230-270). The peaks at $450 \sim 500$ nm are xenon charactristics and the broad peak at 550 nm is 2nd order diffraction of monochromator.

Fig. 5. Emission spectrum of Eu³⁺ under excitation at 270 nm.

들을 찾기 위하여 입사광의 파장을 바꾸어 가 면서 610nm 부근의 빛 세기를 측정하였다.(Fig. 6) 센 방출을 보이는 입사광의 파장은 자외선 영역과 356, 388, 462, 525, 575nm인데, 이 파 장에서 들뜨기가 가장 많이 일어난다고 볼 수 있고, 이 값들은 다른 결정속에서 Eu³⁺의 에너 지 준위 및 Eu³⁺이 자유이온 일때 에너지 준위 에 대한 문헌값들과^{27~30} 거의 일치 하였다.(Table 1), 이 사실은 앞에서 언급한 바와 같이 4f 전자는 결정장의 영향을 아주 적게 받기 때문 이다. 그리고 자외선 영역의 빛으로 돌뜨게 할 때 강한 붉은색 방출이 보이는데, 이것은 Eu³⁺ 이온이 4f⁶의 전자구조를 가지고 있어서 주변에 있는 리간드(ligand)로 부터 전자를 하나 받아 4f⁶의 안정한 상태가 되려하므로 4f⁶→4f⁷Pl⁻¹(Pl

85

河英龜・金太三

Fig. 6. The excitation spectrum of LaOCI: Eu^{3+} , emission at 610 nm.

은 Ligand의 P전자)의 전이가 쉽게 일어난다. 그래서 LaOCl 결정속에서 전하이전 상태(Charge Transfer State:CTS)는 35,000~40,000cm⁻¹의 애너지 준위를 갖게되고²⁹ 자의선을 받아 들뜨 면 넓은 흡수스팩트럼을 보인다.(Fig. 6) 전하 이전 상태로 들뜨는 스팩트럼은 다른 들뜨기 스팩트럼, 즉 4f→4f 전이와 스팩트럼의 모양으 로 쉽게 구분할 수 있었다.

활성제로 작용하는 Eu³·의 농도에 따라 형광 스펙트럼의 세기를 얻어보면(La₁, Eu₂)OCl에서 x값이 0.03이하 일때는 농도가 증가함에 따라 형광의 세기도 중가하다가 그 이상의 농도 범 위에서는 다시 감소하였다(Fig. 7), 이 현상은 형광물질의 가장 기본적인 농도 소광 현상인 들뜨기 얘너지의 이동에 의한 소광으로 볼 수 있다. 이 경우에 Eu^{3·}에서 Eu³⁻으로의 에너지 이동은 비공명 전달(nonresonance transfer)을 거친다. ³D₄ 준위와 ⁵D₈과의 간격은 ⁷E₁들 사이

Table 1. Comparison of Eu^{3+} (4f') energy level in the free ion state and various host

term	free ion	Y ₂ O ₂ S	K2EuCl5	this Exp
5D _o	580	583	581	575
5D ₁	525	[^] 527	527	525
$5D_2$	465	468	465	462
$5D_3$	420	410	418	-
5L.	395	-	395	388
5L-	375	—	368	-
5D.	362		362	356

*Unit is nm.

Fig. 7. Relative fluorescence intensity of $(La_{1,x}Eu_x)$ OCI excitation at 270 nm and emission at 610 nm.

의 에너지 간격보다 훨씬 크기 때문에 에너지 전달과 동시에, 여분의 에너지를 격자속에 포논 (phonon)에너지 형태로 내보낸 것으로 본다.

Tb³⁺의 형광스펙트럼, Tb³⁺이온의 경우는 (La_{1*} Tb₂)OCl에서 x가 약 0.1이하에서는 ⁵D₄→ ⁷F₃의 방출 세기가 농도에 따라 중가하고 x가 0.1 이상인 Tb³⁺의 농도에서는 농도 소광현상을 보였다. ⁵D₄ 방출에 대한 농도 소광현상은 Eu³⁻ 와 마찬가지로 들뜨기 에너지 이동에 의한 농 도 소광으로 볼 수 있었다.

⁵D₃→⁷F₃의 방출세기는 ⁵D₄경우보다 작온 농도 인 x가 0.003일때 최대세기를 보였다(*Fig.* 8).이 현상은 Van Uitert등의 교차이완(cross-relaxation)에 의한 농도소광¹²으로 설명할 수 있는데 *Fig.* 8에서 보는 바와 같이 농도가 커짐에 따라 두 Tb³⁺이온 사이에 교차이완이 많아지고, ⁵D₃ →⁵D₄의 이완이 많아짐에 따라 준 안정 상태인 ⁵D₄로 부터의 방출이 많아지기 때문이다.

 $Tb^{3+}(^{5}D_{3}) + Tb^{3+}(^{7}F_{6}) \rightarrow Tb^{3+}(^{5}D_{4}) + Tb^{3+}(^{7}F_{0})$

결정내부애 Tb^{3·}이온이 불균일하게 분포하면 특 별히 인접해 있는 Tb^{3·} 이온들끼리 교차이완을 일으키기 때문에 농도 소광현상이 나타나는 것 으로 볼 수 있다. 이러한 현상은 Lammers와 Blasse의 실험²²에서도 잘 설명되었다.

Fig. 8. Relative fluorescence intensity of La_{1x} Tb_x OCl excitation at 230 nm, emission at 410, 540 nm.

그의 실험에서는 GdTaO4에서 Tb³의 방출세 기를 비교하였다. Gd₂O₃, Ta₂O₅, Tb₄O,를 섞어 서 고체반응을 통하여 만든 시료들과, 위 산화 물질들을 HCI에 녹여 NaOH로 침전시킨 다음 태워서 (Gd Tb)2O3를 만들고 이것과 Ta2O5를 고체반응을 통하여 만든 시료는 같은 비율로 출발하여 만들었을지라도 고체 반응을 통하여, 만든 시료는 인접해 있는 Tb3'이온돌끼리 작용 하여 ⁵D₃→⁵D, 전이가 많이 생기고 따라서 ⁵D₃/ °D, 비율이 작다. 즉 불균일 반응으로 말미암아 인접해 있는 Tb³⁺가 많을 수록 교차이완이 많 아지는 것을 보인것이다. 이와같이 230nm의 자 외선으로 돌뜬 Tb³⁺는 4f⁶ 준위에서 더 낮은 4f⁶ 준위인 ⁵D₃로 빠르게 이완(relaxation)된 다음 ⁵D₃에서 ⁵D,로 더 이완 되든지 아니면 ⁵D₃애서 바닥상태로 바로 떨어지며 400nm 부근의 빛울 방출한다(Fig. 9).

⁵D₃→⁵D₄의 이완은 Tb³⁺의 농도가 진할수록 많이 일어나고, 농도가 묽어 Tb³⁺끼리 거리가 멀면 교차이완이 생기지 않는다. 그러므로 교차 이완이 생기는 임계(Critical)거리를 생각할 수 있다.²⁴ Fig. 9에서 보면 Tb³⁺의 농도가 x=0. 003일때 ⁵D₃와 ⁵D₄로 부터의 방출세기가 같은데, 이 농도에서는 ⁵D₃→⁵D₄로 부터의 방출세기가 같은데, 이 농도에서는 ⁵D₃→⁵D₄ 전이와 ⁵D₃→바 닥상태 전이가 같은 비율로 생겨난다. 이 때는 한 Tb³⁺에서 임계거리보다 가까운 곳에 또 다 른 Tb⁵⁺가 있을 확률이 0.5인 것이다. 임계거리 Fig. 9. Emission spectrum of Tb^{3+} under excitation at 230 n:a. (1) (La_{0.999}Tb_{0.01})OCl. (2) (La_{0.99}Tb_{0.01})OCl

r로 이루어진 구형의 채적을 Vr이라 하면 r보다 가까운 곳에 있는 점은 Vr내부에 들어있게 되 므로 Vr=43 m³이다. 한편LaOCl의 결정학적 자 료로 부터(Fig. 3) La³⁺ 한개가 결정속에서 차지 할 수 있는 부파는 58.3(Å³)이다. 결국 임계채 적 Vr 내부에는 양이온이 Vr÷58.3=k가 들어 있다. 그리고 양이온은 La³⁺와 Tb³⁺는 0.997: 0.003으로 섞여 있다.

임계체적 내부에는 중심에 Tb³⁺가 있고 주변 에 양이온들이 분포하는데, 주변의 k개의 격자 점에 La³⁺만 있고 Tb³⁺는 없을 확률이 0.5이다.

즉 (0.997)*=0.5 k=230개 그러므로

 $Vr = 230 \times 56.3 (Å^3) = 13409 (Å^3)$ $r = \sqrt[3]{\frac{3Vr}{4\pi}} = 15 Å$

에너지가 교차이완으로 에너지가 전달될 수 있는 거리가 20A 정도까지 미친다는 Dexter의 계산⁵에 비추어 볼때 15A받아들일 만한 값이다.

270nm로 들뜨게 하면 Ď₄에서 'F로의 방출만 보였다. 270nm의 자외선을 받아 4f'5d로 들뜬 Tb³⁺는 ⁵D₃를 거치지 않고 ⁵D₁로 곧바로 이완되 어 ⁵D₄→'F, 방출을 보인것이다.

Tb³⁺에서 Eu³⁺으로의 에너지 전달. Eu³⁺아 온과 Tb³⁺의 스펙트럼을 보면 Eu³⁺의 ⁵D, 준위 의 ⁷F_s→⁵D,흡수 스펙트럼과 Tb³⁺의 ⁵D₄→⁷F₆의

87

河英龜・金太三

Fig. 10. Increase of Eu^{3+} fluoresence by energy transfer, excitation at 270 nm, emission at 610 nm.

방출 스펙트럼이 겹치는 (over lap) 부분이 있 다. 방출 스펙트럼과 흡수 스펙트럼이 중첩부분 올 가지고 있으면 공명에 의한 에너지 전달(resonace transfer)를 생각할 수 있으므로'이 현 상을 보기 위하여 일정한 농도의 Eu³⁺ 이온과 여러가지 농도의 Tb³⁺ 이온을 같이 LaOCl 격자 속에 치환시켜서 Eu³⁺ 이온의 방출세기를 측정 하였다. Tb³⁺ 이온이 많아짐에 따라 Eu³⁺이온에 서 방출되는 스펙트럼의 세기가 중가하는 것을 볼 수 있었다(Fig. 10). 결국 Tb³⁺→Eu³⁺의 에 너지 전달이라고 할 수 있는데 위의 경우는 Tb³⁺의 농도가 커지면, Tb³⁺이온의 방출세기도 역시 커지고 있어서 에너지 전달에 의한 Tb³⁺ 으로 부터의 방출세기가 감소하는 정도는 잘 볼 수 없었다. 그러나 Tb³⁺ 이온의 농도를 일 정하게 하고 Eu³⁺의 농도를 증가시키면 에너지 전달로 인한 Tb³⁺으로 부터의 방출세기가 감소 하는 것을 볼 수 있었다. 어느 경우이든지 각 각의 이온들이 농도 소광을 일으키는 임계농도 보다 많을 경우에는 농도 소광에 의해 각각의 방출세기가 줄어들기 때문에 에너지 전달의 효 과를 정량적으로 알아보기는 어려웠다.

또 Eu^{3*}과 Tb^{3*}으로 활성화된 LaOCl의 형광 쇄잔시간을 보면 LaOCl에 분포된 Tb^{3*}이온의 고유쇄잔 시간은 2.3*m*sec인데 Eu^{3*}이온의 농도 가 증가함에 따라 쇄잔시간이 짧아져서(Laase Euaaz) OCI에서는 0.2*m*sec로 줄어들었다.(*Fig.* 11) 들뜬 상태에서 바닥상태로 떨어지는 확을이

Fig. 11. Decay curves of $Tb^{3+}({}^{5}D_{4})$ emission. a. intrinsic ${}^{5}D_{4}$ decay curve, $t_{F}=2.3$ msec. b. Quenched ${}^{5}D_{4}$ decay curve, $t_{F}=0.2$ msec.

Fig. 12. Scheme representing the energy transfer and relaxation process in LaOCI: Tb^{3+} , Eu^{3+} solid line:emission broken line:internal relaxation zig-zag line: energy transfer. CTS: chargy transfer state.

클수록 들뜬 상태의 수명은 짧아진다. Tb³⁺근처 에 Eu³⁺가 있으면 Tb³⁺의 ⁵D,준위에서 발광하며 바닥상태로 떨어지는 경로, 이외에 Tb^{3*}에서 Eu³⁺로 에너지가 전달되고 Tb³⁺는 바닥상태로 떨어지는 경로가 하나 더 생기므로 바닥상태로 떨어지는 확율은 커지고 ⁵D,의 수명은 짧아진 것이다.

이상의 결과를 종합하여 보면 Eu³⁺와 Tb³⁺를 LaOCl에 분포시키면 270nm의 자의선을 받아 들뜬상태가 되었다가 Tb³⁺의 에너지 일부는 Eu³⁺로 전달하고 각각 바닥상태에 이르게 되는 데 그 경로를 표시하면 *Fig.* 12와 같이 나타낼 수 있었다.

본 연구는 1987년도 문교부 기초과학육성 연 구비의 지원에 의한 것임.

- 안 용 문 헌
- 1. S. J. Weissman, J. Chem. Phys., 10, 214 (1942).
- H. W. Leverenz, "An Introduction to the Luminescence of Solid", John. Wiley & Son. Inc, New York, 1950.
- 3. L. G. Van Uitert, R. R. Soden, R. C. Linares, J. Chem. Phys., 36, 1973 (1962).
- 4. G. Blasse, J. Chem. Phys., 45, 2356 (1966).
- L.G. Van Uitert, R.R. Soden, J. Chem. Phys., 36, 517 (1962).
- 6. G. Blasse, A. Bril J. Chem. Phys., 45, 2350 (1966).
- 7. G. Blasse, A. Bril J. Chem. Phys., 47, 5139 (1967).
- 8. D. L. Dexter, J. Chem. Phys., 21. 836 (1953).
- M. Inokuti. Fumio Hirayama. J. Chem. Phys., 43, 1978 (1965).
- 10. F. Varsanyi and G. H. Dieke., Phys. Rev. Letters, 7, 442 (1961).
- 11. D. L. Dexter, J. Chem. Phys., 21, 836 (1953).
- L. G. Van Uitert, L. F. Johnson, J. Chem. Phys., 44, 3514 (1966).

- D. L. Dexter, and J. H. Schlman, J. Chem. Phys., 22, 1063 (1954).
- 14. G. Blasse and A. Bril, J. Chem. Phys., 48, 217 (1968).
- G. Blasse and A. Bril, J. Chem. Phys., 50, 2974 (1969).
- G. Blasse and A. Bril, J. Chem. Phys., 51, 3252 (1969).
- G. Blasse and A. Bril, J. Chem. Phys., 53, 681 (1970).
- A. C. Van Steen, J. J. A. Van Hesteren and A. P. Slok, J. Electrochem. Soc., 126, 1327 (1981).
- 19. Hao Zhiran and G. Blasse, J. Solied State. Chem., 55, 23 (1984).
- M. Saakes and M. Leskela and G. Blasse, *Mat. Res. Bull.*, **19**, 83 (1984).
- M. Saakes and M. Leskela and G. Blasse, *Mat. Res. Bull.*, 19, 151 (1984).
- 22. L. H. Brigner, Mat. Res. Bull., 19 143 (1984).
- W. Keochner, "Solid-state LASER Englineering", Springer-Verlage Pub., New York, 1976.
- 24. G. Blasse and A. Bril, J. Chem. Phys., 46 2579 (1967).
- A. Wolfert and G. Blasse, Mat. Res. Bull., 19, 67 (1984).
- Ehchiro Nakazawa and Shigeo Shionoya, J. Chem. Phys., 47, 3211 (1967).
- M. A. El'yashevich, "Spectra of the Rare earth", 1961.
- 28. H. G. Brittain, J. Solid state Chem., 54, 156 (1984).
- 29. C. W. Struck and W. H. Fonger, J. Chem. Phys., 64, 1784 (1976).
- R. Reisfeld, E. Greenberg, R. Velapoldi, J. Chem. Phys., 56, 1968 (1972).
- 31, A. K. Agarwal, N. C. Lohni, T. C. Pant, J. Solid state. Chem., 54, 219 (1984).
- 32. M. J. J. Lammers and G. Blasse, *Mat. Res. Bull.*, **19**, 759 (1984).