DAEHAN HWAHAK HWOEJEE (Journal of the Korean Chemical Society) Vol. 33, No. 1, 1989 Printed in the Republic of Korea

단 신

열분해-가스크로마토그라피/질량분석법에 의한 동물성 지방의 확인 방법 연구

金豐作[†]·洪思雯·大票直毅^{*} 한국화학 연구소 *日本 東京都 西多摩都 瑞穗町 武叢 208, 日本 分所 工業 株式會社 (1988, 9, 7 접수)

Studies on the Fingerprints by the Thermal Degradation of Fats with Pyrolysis Gas Chromatography/Mass Spectrometry

Poongzag Kim, Sah Mun Hong[†], and Naoki Oguri^{*}

Korea Research Institute of Chemical Technology, Daejeon 302-343, Korea *Japan Analytical Industry Co., Ltd. 208 Musashi Mizuho Nishitama, Tokyo, 190-12 JAPAN (Received September 7, 1988)

열분해와 그 결과 얻어진 토막(fragments)의 효과적인 분리 및 확인을 위한 세련된 물리화 학적 기술의 조합으로 말미암아 열분해 분석법 의 현저한 발전이 있었다. 즉 열분해 기체크로 마토그라피(PY-GC)방법을 이용하여 시료를 열분해 하여 분해 토막을 얻고 기체크로마토그 라피(GC) 및 질량분석법을 통하여 분리하고 구 조를 규명하여 왔다.^{1~6} 열분해 장치로는 온도 상승이 빨라서 정확하게 평형온도를 조절할 수 있는 Curie-point 열분해 방법을⁷ 사용하고 GC 에서는 모세관 컬럼을 사용하며 여기에 주사속 도가 빠른 질량 분석기를 직접 PY-GC에 접속하 여* PY-GC의 능력범위를 보다 확장시켰다.*~¹⁰

본 연구에서는 열분해 기체크로마토그라피/질 량분석법(PY-GC/MS)을 사용하여 동물성 지방 (fat)을 분석하여 이들 지방을 구분할 수 있는 기준을 얻고자 한다. 쇠고기, 돼지고기, 닭고기 그리고 오리고기의 지방질에서 얻은 시료들을 분해온도 500°C, 590°C, 그리고 670°C에서 파이 로그램을 얻었고 가장 분해도가 좋은 590°C에서 는 5회 반복 실험하였다. 실험장치와 조건은 Fig. 1과 Table 1에 각각 주어져 있다. 분해온 도 500°C에서의 파이로그램의 각 성분 피이크 (peak)는 잘 알아 볼 수 없을 정도로 뭉그러져 있었고 670℃에서의 파이로그램은 머무름 시간 이 긴쪽의 피이크들의 상대적 세기가 590℃의 파이로그램 보다 약하였다. 이런 현상은 머무름 시간이 긴 성분들은 높은 열에 의해 더 많이 분해되기 때문인 것으로 생각된다." 각 시료들 의 590℃에서의 파이로그램(pyrograms)은 *Fig.* 2~5에 주어져 있다. 그림에서 보듯이 많은 분 해 토막들로 파이로그램은 이루어져 있다. 이들

Fig. 1. Flow diagram of Py-GC-MS system. 1, Timer; 2, oscillator; 3, induction coil; 4, injector; 5, quartz tube; 6, sample charge; 7, valve; 8, GC column; 9, mass spectrometer; 10, carrier gas.

I able	1.	Operating	conditions	for	pyrolysis-gas	ch
romate	ogr	aphy – mass	spectrome	try		

Parameters	Conditions
Sample	ca.lmg
Pyrolyzer	JHP-2(Japan Anal, Ind. 150W)
Pyrolysis Temperature	590°C
Gas Chromatograph	Hewlett-Packard 5890A
Column	Carbowax 20M capillary
	column, 25m×0.32mm(ID)
Column Temperature	50°C to 140°C temp. program
	5°C/min
Garrier Gas	Helium 1 ml/min
Injection Temperature	250°C
Mass Spectrometer	JEOL JMS-DX303
Mass data system	JEOL JMA-DA5000
Resolution	1,000
Source Temperature	250°C
Electron Energy	70eV
Accelerating Voltage	3.0KV/DAC

파이로그램은 머무름 시간의 입장에서 볼때 모 두 같은 양상을 보여 주고 있다. 따라서 분해 성분의 확인을 위하여 Fig. 2의 쇠고기 지방의 분해 토막들만 번호로 표시하여 지방들의 파이 로그램을 구별하여 본다. 물론 다른 지방의 분 해에서 얻어진 토막들도 머무름 시간이 같으면 성분도 같음이 질량분석법에 의하여 확인되었 다. 우선 4가지 시료중 닭의 지방에서 얻은 파 이로그램은 번호 1, 3, 16, 18, 24, 25, 27율 제외한 분해 토막들은 다른 지방보다 약한 상 대적 세기를 보여 주므로 쉽게 구별이 된다. 나머지 소, 돼지, 오리의 지방은 보다 확인이 쉬운 열분해 토막들의 상대적 세기를 비교하여 구별할 수 있다. 우선 가장 큰 상대세기를 갖 는 분해 토막은 쇠고기의 경우는 번호 0과 16. 돼지고기의 경우는 27, 오리고기의 경우 27에 해당한다. 스캔(scan) 번호 0에서 1,200사이에

Journal of the Korean Chemical Society

Peak number	Composition formular	U.S."	Mass fragmentation pattern using 70eV electron excitation
1	C7H14	1	98, 83, 70, 56, 41
2	C ₈ H ₁₈	0	114, 85, 71, 57, 43
3	C_8H_{16}	1	112, 96, 79, 70, 56, 41
4	C ₉ H ₂₀	0	128, 99, 85, 71, 57, 43
5	C ₉ H ₁₈	1	126, 97, 84, 78, 70, 56, 43
6	C10H20	1	140, 124, 110, 97, 82, 70, 67, 56, 41
7	$C_{11}H_{22}$	1	154, 124, 111, 97, 93, 70, 55, 43
8	$C_{11}H_{22}$	1	154, 138, 125, 111, 97, 83, 69, 55, 41
9	$C_{11}H_{22}$	1	154, 126, 111, 97, 83, 70, 56, 43
10	C12H24	1	168, 140, 125, 111, 97, 83, 69, 56, 43
11	C ₁₁ H ₂₀	2	152, 124, 109, 95, 81, 67, 54, 41
12	$C_{13}H_{28}$	0	184, 152, 141, 127, 113, 99, 85, 81, 71, 68, 57, 43
13	C13H26	1	182, 154, 140, 125, 111, 97, 83, 69, 55, 43
14	$C_{12}H_{22}$	2	166, 138, 124, 109, 96, 81, 67, 54, 41
15	C12H22	2	166, 95, 81, 68, 57, 43
16	$C_{14}H_{28}$	1	196, 168, 154, 140, 125, 111, 97, 83, 69, 57, 43
17	C14H26	2	194, 166, 138, 124, 109, 96, 81, 67, 55, 43
18	C15H32	0	212, 169, 155, 141, 127, 113, 99, 85, 71, 57, 43
19	C ₁₅ H ₃₀	1	210, 194, 182, 149, 139, 125, 111, 97, 83, 69, 55, 41
20	C ₁₅ H ₃₀	1	210, 194, 182, 139, 125, 111, 97, 83, 69, 55, 43
21	$C_{15}H_{28}$	2	208, 194, 180, 138, 124, 109, 96, 81, 67, 55, 41
22	C15H30	1	210, 97, 83, 67, 55, 41
23	C16H32	1	224, 176, 152, 139, 125, 111, 97, 82, 69, 55, 41
24	C16H32	1	224, 196, 154, 139, 125, 111, 97, 83, 69, 57, 43
25	C ₁₆ H ₃₀	2	222, 194, 138, 123, 109, 96, 82, 67, 55, 41
26	$C_{17}H_{36}$	0	240, 183, 169, 155, 141, 127, 113, 99, 85, 71, 57, 43
27	$C_{17}H_{34}$	1	238, 210, 154, 139, 125, 111, 97, 83, 69, 55, 43
28	C ₁₇ H ₃₄	1	238, 210, 168, 154, 139, 125, 111, 97, 83, 69, 57, 43
29	C ₁₇ H ₃₂	2	236, 208, 194, 180, 166, 152, 138, 124, 109, 96, 82, 67, 55, 41

Table 2. Pyrolysed products of fats at 590℃ for 4 sec

"U.S.: Unsaturation Number.

.

145

金豊作・洪思雯・大票直毅。

서는, 분해 토막 6이 쇠고기 시료에서 두드러 져 보이고 스캔번호 1,200에서 1,800사이에서는 16, 18, 20에 해당하는 토막들은 쇠고기와 오리 고기에서는 그 양상이 비슷하지만 돼지고기에서 는 16과 18분해 토막의 상대세기가 거의 같다. 스캔번호 1,800에서 2,200사이에서는 24, 25, 26 에 해당하는 분해 토막들의 상대세기도 비교된 다.

이상에서 4가지 지방의 확인을 위한 기준, 즉 지문(fingerprint)이 파이로그램으로 부터 얻 어질 수 있음을 알 수 있다.

한편 파이로그램에서 나타난 분해 토막들의 조성은 질량분석기로 확인한 결과 머무름 시간 이 같으면 동일한 성분임이 확인 되었고, 이들 은 대부분 알칸족과 알켄촉들로 이루어져 있었 다. 전자 이온화 방법에 의해 결정된 질량 분 해 토막의 양상은 Fig. 2~5에서 확인된 성분 각각에 대해 Table 2에 주어져 있다. 결론으로 본 연구에서 적립한 분석조건을 이용하여 동물 성 지방을 분석하므로써 그들 지방을 함유한 고기의 종류를 알아 낼 수 있는 지문을 얻었 다.

인 용 문 현

- 1. G. B. Bachman and H. Hellmann, et al. J. Org. Chem., 12, 108 (1947).
- 2. P. D. Zemany, Analyt. Chem., 24 1709 (1952).
- 3. P. Bradt. V. H. Dibeler and F. L. Mohler, J. Res. Nat. Bur. Stand., 50 201 (1953).
- 4. E. A. Radell and H. C. Strutz, Analyt. Chem., 31 1890 (1959).
- 5. S. B. Martin, J. Chromatogr., 2, 272 (1959).
- J. I. William, "Analytical Phrolysis: A Comprehensive Guide", in "Chromatographic Science Series", Vol. 22, Marcel Dekker, New York, U. S. A., 1982.
- C. Buhler and W. Simon, J. Chromatogr. Sci., 8, 323 (1970).
- A. I. M. Keulemans and S. G. Perry, "Gas Chromatography", p. 356, N. van swaay, Ed., Butterworth, Inc., Washington D. C., U. S. A., 1962.
- J. Vollmin, P. Kriemler, I. Omura, J. Seibl and W. Simon, *Microchem. J.*, 11, 73 (1966).
- H. L.C. Meuzelaur and R.A. in't Veld, J. Chromalogr. Sci., 10, 213 (1972).
- 11. Yoshihiro Sugimura and Shin Tsuge, J. Chromatogr. Sci., 17, 269 (1979).