DOI QR코드

DOI QR Code

Crystal Structure of Dehydrated Partially Ag$^+$-Exchanged Zeolite A treated with Cesium Vapor at 250${^{\circ}C}$

  • Kim, Duk-Soo (Department of Chemistry, Cheju National University) ;
  • Song, Seong-Hwan (Department of Chemistry Pusan National University) ;
  • Kim, Yang (Department of Chemistry Pusan National University)
  • Published : 1989.06.20

Abstract

The crystal structure of partially $Ag^+$-exchanged zeolite A, $Ag_{3.2}Na_{8.8}$-A, vacuum dehydrated at $360^{\circ}C$ and then exposed to 0.1 torr of cesium vapor for 12 hours at $250^{\circ}C$ has been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m (a = 12.262(2)${\AA})\;at\;21(1)^{\circ}C$. The structure was refined to the final error indexes $R_1=0.068\;and\;R_2=0.072$ by using 338 reflections for which $I_o\;>\;3{\sigma}(I_o)$ and the composition of unit cell is $Ag_{3.2}Cs_{8.8}-A.\;3\;Cs^+$ ions lie on the centers of the 8-rings at sites of D4h symmetry. Two crystallographycally different 6-ring $Cs^+$ ions were found: 1.5 $Cs^+$ ions at Cs(2) are located inside of sodalite cavity and 4.3 $Cs^+$ ions at Cs(3) are located in the large cavity. The fractional occupancies observed at Cs(2) and Cs(3) indicate that the existence of at least three types of unit cells with regard to the 6-ring $Cs^+$ ions. For example, 50% of unit cells may have two $Cs^+$ ions at Cs(2) and 4 $Cs^+$ ions at Cs(3). 30% of unit cells may have one Cs+ ion at Cs(2) and 5 $Cs^+$ ions at Cs(3). The remaining 20% would have one $Cs^+$ ion at Cs(2) and 4 $Cs^+$ ions at Cs(3). On threefold axes of the unit cell two non-equivalent Ag atom positions are found in the large cavity, each containing 0.64 and 1.92 Ag atoms, respectively. A crystallographic analysis may be interpreted to indicate that 0.64 $(Ag_5)^+$ clusters are present in each large cavity. This cluster may be viewed as a tetrasilver molecule $(Ag_4)^0$(bond length, 2.84${\AA}$) stabilized by the coordination of one $Ag^+$ ion.

Keywords

References

  1. J. Am. Che. Soc. v.99 Y. Kim;K. Seff
  2. J. Am. Che. Soc. v.100 Y. Kim;K. Seff
  3. J. Phys. Chem. v.91 Y. Kim;K. Seff
  4. J. Phys. Chem. v.91 Y. Kim;K. Seff
  5. Bull. Chem. Soc. Jpn. v.45 H. Tsutsumi;H. Takahashi
  6. Metal Microstructures in Zeolites H. K. Beyer;P. A. Jacobs;P. A. Jacobs(ed.)
  7. J. Chem. Soc., Faraday Trans. I v.72 H. K. Beyer;P. A. Jacobs;J. B. Uytterhoeven
  8. J. Phys. Chem. v.82 Y. Kim;K. Seff
  9. Bull. Korean Chem. Soc. v.5 Y. Kim;K. Seff
  10. Bull. Korean Chem. Soc. v.9 D. S. Kim;S. H. Song;Y. Kim
  11. Ber. Bunsenges Phys. Chem. v.84 D. Hermerschmidt;R. Haul
  12. Surf. Sci. v.156 P. J. Grobet;R. A. Schoonheydt
  13. Presented at the 184th National Meeting of the American Chemical Society G. A. Ozin;F. Hugues;S. Mattar;D. McIntosh
  14. J. Magn. Reson. v.68 J. R. Morton;K. P. Preston
  15. Metal Microstructures in Zeolites L. R. Gellens;R. A. Schoonheydt;P. A. Jacobs(ed.)
  16. J. Phys. Chem. v.88 G. A. Ozin;M. D. Baker;J. J. Godber
  17. Ph. D. Thesis, University of Hawaii L. B. McCuster
  18. J. Cryst. Growth. v.8 J. F. Charnell
  19. Ph. D. Thesis, University of Hawaii N. H. Heo
  20. J. Phys. Chem. v.88 K. Seff;M. D. Mellum
  21. J. Phys. Chem. v.76 K. Seff
  22. Structure Determination Package Programs B. A. Frentz;Y. Okaya
  23. Acta. Crystallogr. Sec. A v.24 P. A. Doyle;P. S. Turner
  24. International Tables for X-ray Crystallography v.IV
  25. Aca. Crystallogr. v.18 D. T. Cromer
  26. International Tables for X-ray Crystallography v.IV
  27. J. Am. Chem. Soc. v.82 L. Broussard;D. P. Shoemaker
  28. Accounts Chem. Res. v.9 K. Seff
  29. Bull. Korean Chem. Soc. v.8 Y. Kim;K. Seff
  30. J. Phys. Chem. v.91 N. H. Heo;C. Dejsupa;K. Seff
  31. J. Phys. Chem. v.82 K. Ogawa;M. Nitta;K. Aomura
  32. J. Phys. Chem. v.86 T. Takahashi;H. Hosoi
  33. Handbook of Chemistry and Physics(63rd Ed.)
  34. J. Phys. Chem. v.79 T. B. Vance, Jr.;K. Seff
  35. J. Am. Chem. Soc. v.99 R. L. Firor;K. Seff
  36. J. Phys. Chem. v.83 V. Subramanian;K. Seff