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Estimation of Frequencies of Multiple Sinusoids

by the Modified ESPRIT Method
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Abstract

The modified ESPRIT (MESPRIT) method for harmonic retrieval is presented and analyzed. The
estimation of frequencies of sinusoidal signals corrupted by white or colored measurement noise
is considered for the MESPRIT method. Monte-carlo simulations are conducted for the
comparison of MESPRIT method with TK method in terms of sampled mean, root mean square

and relative bias.

1. Introduction

Estimation of spectrum from finite noisy
measurements is a very interesting and practical
problem. It has been studied and used in many
fields. With the rapid development of modern
technology, the need for estimation of spectra
becomes ever increasing, and therefore motivates
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more and more researchers on this issue.

We are mainly interested in estimation of
multiple sinusoidal frequencies, or narrow-banded
spectral estimation in its broad sense, from finite
noisy data. As is well known, estimation of
frequencies is closely related to spectral estim-
ation[9]. As a special important case in spectral
estimation, frequency estimation has recieved
much attention in the last two decades{6-8}
[111]13], when researchers have concentrated
themselves on improving resolution. As a result,
a number of new ideas have been proposed|1]
[21{51[211{22].

The high resolution methods that have been
proposed to solve the problem vary from linear
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prediction methods (Linear Predicition (LP)
[10]1[18] and Forward-Backward LP (FBLP)
[61[11][24]), Yule-Walker methods (Overdeter-
mined Yule-Walker (OYW){14] and High-Order
Yule-Walker (HOYW)[15][16]1[19]) and subspace
methods (Pisarenko Harmonic Decomposition
(PHD)[22], MUltiple SIgnal Classification (MUSIC)
[21] and EigenVector (EV)[23]) to Tufts-Kuma-
resan (TK)[3] method, Maximum Likelihood
(ML)[4][17] method and Estimation of Signal
Parameters via Rotational Invariance Techniques
(ESPRIT){1][2] method. It is known so far
that the ML method has the best performance and
can be used to find the statistically efficient
estimators[4] However the ML function is
highly non-linear in its parameters, only performed
iteratively and therefore expensive to implement.
On the other hand, the non-iterative TK method
has been illustrated to have the second best per-
formance.

In this paper, we present a modified ESPRIT
(MESPRIT) method through an approach similar
to ESPRIT. Using the MESPRIT method, we are
to estimate the frequencies of multiple sinusoids
from measurement data corrupted by white or
colored noise in various examples. Monte-carlo
simulations are conducted for MESPRIT and TK
methods from a viewpoint of sampled mean, root
mean square and relative bias. And then the
performances of MESPRIT method are com-
pared with those of TK [3][5] method.

II. Problem Formulation

Consider the following sinusoidal signal

x(t) = i;: sin(@it+ &) (1)

where £, {1€R, wi € (0, Mand w,%w, for i%j.
Let y(t) denote the noise-corrupted measure-
ments of x(t)

y(t)=x(t) +e(t) (2)

where e(t) is a sequence of independent and
identically distributed random variable of zero
mean and variance 02. It is assumed that x(t)
and e(t) are uncorrelated for any t.

As is known, x(t) obeys the following autore-
gressive (AR) process[6] [12]

Al@)x()=0 (3)
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where q! denotes the unit delay operator and
A(q™) is a polynomial of of degree of 2m defined

by
AlQ)y({t)=14a,q '+ +amq 2™
(4)

It follows from (2)-(4) that y(t) obeys the follo-
wing degenerate autoregressive moving-average
(ARMA) process[12]

-1 (1+ 2coswq'+q?)
i=1

Alg )y{(t)=Alg Yelt) (5)

It is easy to show that the roots of A(z) appear
on the unit circle at exp (ijwi), i=1,2,...,m,

Next multiplying both sides of (5) by a nonzero
polynomial in q”1, say B(q"!), we obtain

Clgy(t)=ClgMelt) (6)

where

Cl@Y=B{g") Alq™ (7)

Throughout the paper it will be assumed that
C(q’Y) is a polynomial degree L (L > 2m) given by

Clq ) =cotciq '+ +cqt (8)

The problem is to estimate the angular frequ-
encies{wi}from the available data y(1),...., y(N).

The frequency estimates are usually obtained
from the following two-step procedure:

(i) Estimate the coefficients {ci}

(1) Find the frequency estimates {wi} either
from the angular positions of 2m largest-
modulus roots, i.e., ®; exp(ij(bi), i=1,...,
m, of C(z) or from those values at the
spectrum  1/|| C(exp(Gw)|[*? reaches its
largest peaks.

In subspace methods, specifically in the MU-
SIC, EV, ESPRIT and MESPRIT methods, the
first step is to find the invariant subspace of the
covariance matrix. The frequencies are then esti-
mated from a spectrum-like function (or its
reciprocal) through minimization (or maximiz-
ation).

III. Modified ESPRIT method

In this section we will consider a modified
ESPRIT (MESPRIT ) method for estimation of
frequencies which is based on the concepts of
signal subspace and closely related to singular
value decomposition (SVD) [20] [24] in on way.
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The orignal idea of MESPRIT method was
drawn from the technique[1]{2] that was dis-
cussed in the direction of arrival (DOA) estimation
and the estimation of parameters of complex
sinusoids. The technique[1][2] cailed ESPRIT
used the generalized eigenvalue problem and
matrix pencil that was constructed by auto- and
crosscovariance matrix.

A modified ESPRIT (MESPRIT) method,
which uses the measured data directly, a simple
eigenvalue principle and the truncated SVD[5]
[20] and avoids the use of the matrix pencil,
will be presented. In the following we will dis-
cuss this MESPRIT method.

For convenience, first we will consider the case
of complex sinusoids (note that real sinusoids can
be expressed into complex sinusoids).

Let

x()=3 £ exp o) (9)

y(t)=x(t)+elt), t=1N (10)

where wie (-m, m) and .Ci are the normalized
frequency and complex amplitude of the i:th
complex sinusoid, respectively, and e(t) is white
Gaussian noise of zero mean and variance 02. It
is assumed that w; # w; for i #j.

Assume that there is no noise in the measure-
ment, ie. y(t)=x(t) in (10). Next we write ‘Ci’
cf (9), into the following form

Li= 181 exp(¢y) (11)

Instead of constructing auto- and  crosso-
variance matrices, define two 2(N-L) x L matrices
X, and X, as follows;

Xy X2 XL X2 LS DA X+
Xn-L XNTLYT XN XN-L+1 XNILYE XN
X, = * * , Xo= * * .. *
Xpwr Xpooeeer X3z Xy X2 Xy
* * * * * *

XN XN-1 XN-1+1 XN-1 XNZET XNt

(12)

where ““*” denotes complex conjugate. To assure

that X; and X, have rank m, L should be chosen
between 2m and N-2m[20].
It is straightforward to show that
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X1=E|A Eg (13)
X;=E,$A E. (14)
where
e (o tHgh) e (s i) e (um )
e o VL) Ha)  eplon N-L)Hd)  exp lom N-L) He)
E, = e (—jo L+ —3h) ep{—w LA1) —i) e (e L) —idi)
ap(—uN—id)  ep(—HuN-4) - ep(—juN—idn)
(15)
1 exp(w, )--+exp (e, (L—1))
1 exp (jw, ) --exp (juw, (L—1)) (16)
E,= | . . .
1 exp (jwm) *--exp (jwm)L—1))
@ —diaglexp (jw,), exp(jw,), -, expjon)t 17)
A=diag<|£1|, |£2|.'”. |£m|} (18)
Consdier the following simple -eigenvalue
problem:
X;Xz=2z (19)

where X;" is the pseudoinverse of X,. Since E;
and E, are of full rank, X, can be expressed into

X;i=E{f A'¢'E} (20)

Then X5 X, = EX®'E,. Substituting this to (19),
finally we have

E:d'E,;z=Az (21)

Since both E, and EY are of rank m and & is non-
singular, E,®!E, is also of rank m. Then it
is easy to show that the eigen-problem has m
eigenvalues 7\i = exp (-jwi), i=1, ..., m, with the
corresponding eigenvectors z; being . the i:th
column of ’E;, and L-m zero eigenvalues with the
corresponding eigenvectors z; in the null space of
E,. The nonzero eigenvalues are hence located
on the unit circle at exp (—jwi), i=1, ..., m.

Thus the true frequencies can be obtained from
the unit-modulus eigenvalue of X;’Xl in the
noiseless case. For noisy data, the eigenvalues will
be perturbed. However, it is known that the
distinct eigenvalues are not so sensitive to noise
perturbation{24]. Hence the frequency estimates
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can be obtained from the m largest eigenvalues.
In order to suppress noise, the signal subspace
concept that uses the truncated SVD to filter out
some noise effect, can be used to estimate the
s1gna1 matrlces of the noisy matrices )22 (or

) and X1

In the case of m real sinusoids, some changes
should be made in the analysis. Since there are
2m complex sinusoids in the signal, L should be
chosen between 2m and N-2m. The frequency
estimates can be obtained from the 2m eigen-
values of largest modulus which, in the noiseless
case, would appear in complex conjugate paris
at exp (i]'wi), i=1, ...,m. For noisy measurements,
the eigenvalues will be purturbed by the noise.
Using the tructated SVD, however, the signal
matrix can be estimated from the noisy matrix.
The frequency estimates can be obtained from
the signal matrix which would have the 2m
eigenvalues in complex conjugated pairs at exp
(*jey), i=1,...,m

IV. Simulation Examples

In this section, simulation examples are given
for frequency estimation performances of sinu-
soids-in-noise process, using the method developed
in the previous sections. In all of the examples,
the signal was assumed to consist of two sinusoids.
Various cases were investigated.

The algorithm estimating the frequencies can
be summarized in the following.

(i) Reduce the noise effect on the noisy mat-

rices X; and )22 by truncated SVD. A

(i) Compute the truncated pseudoinverse of X,.

(i)Ifind the m largest eigenvalue )\i’s of ).(2 T

Xir
(iv) From 7\ e estimates w are obtained by
w = -Im [In )\ ].
Example 1. (short data, widely separate frequ-
encies)

The data we simulated is given by

y (1) =4/2 sin (0. 7226t) +./2 sin(1.0367t) +e (1)

(22)

where e(t) is zero mean white Gaussian process.
The data length is N=64, and the SNR is 10 dB,
i.e., SNR1= SNR2=10 dB (SNR=10 log (.Czi/202)
i=1, 2, cf. (1) and (2)). We have used 50 different

(1456)
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noise realization and computed the frequency
estimates for a number of ‘““design parameters”’
like L.

The following quantities have been evaluated
(for i=1,2) in all the examples:

Sl };o'. i (sampled mean value of o:)i)
rms (&) =y/mse (&) (root mean square of w,)
where
mse ( % ) @ —w)? ((r)r;e:}n)square error
8 (o) = | &)'d“w‘ ! (percentage bias of (I)i)

Results for the approximately ‘“‘best ’’ design
parameters are given in Table 1. For each method,
the spectrum for one realization is show in Figure
1. The angular positions of frequency estimates
for 50 realizations illustrated in Figure 2.

It is easy to see from this example that the
MESPRIT and TK methods provide about the
same accuracy, which is quite satisfactory.

Example 2. (short data, closely spaced
frequencies)

In this example the data is taken from the
following process:

— /2 sin (0.72261) + /2 sin (0. 8168t) +e (1)

(23)

where e(t) is a Gaussian white noise of zero mean
and variance 0%=0.01 (SNR=20 dB), the data
length is 64, and 50 noise realizations are used.
The procedures in Example 1 are repeated. The
performances are summarized in Table 2.

It can be seen from this example that the
performances provided by the MESPRIT
method are comparable to those in TK method.

Example 3. (longer data,
frequencies)

widely separate

The process in this example satisfies (22) but
we have taken 200 data and simulated for 25
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Table 1. Estimation performances of Example 1.

Estimation of Frequencies of Multiple Sinusoids by the Modified ESPRIT Method

method @, @3 rms (@&,) rms (&,) (@) (@) design
parameter
TK 0.7227 1.0367 0.0020 0.0025 0.00019 0.00010 L=35
MESPRIT 0.7227 1.0363 0.0020 0.0024 0.00012 0.00040 L=40
o . 1
TK o9
— .20} e 08r
2
0.7
(=]
£ -a0 AP e . o6k
_60 1
o 2 3 4 04
03
(a)
021
o 0.1}
MESPRIT 0 . -
0 0.2 04 08 1
= -—=20} .
<) Reat
a
& ~40r T ta) TK
—-60 i " 1
o 2 3 4 osl
(b) 08F
. . ayw 0'7-
Fig.1. Normalized spectral densities of Example
1. The angular frequency w is in radian/ g oer
sec. B os}
E
04
03}
realizations. The SNR is 4 dB. Results are pres- o2

ented in Table 3.

Example 4. (longer data, closely space
frequencies)

This example is the same as Example 2 except

that N=200, SNR=12 dB, and that 25 noise

Fig.

2.

01r

08 1
Real

(b) MESPRIT
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The angular positions of frequency esti-
mates for 50 realizations of Example 1.

Table2. Estimation performances of Example 2.

me thod B @ | rms(@) rms (@) s  ala) | desEn
parameter

TK 0.7227 0.8169 0.0020 0.0019 0.00013 0.00008 L=40

MESPRIT 0.7227 0.8167 0.0021 0.0020 0.00023 0.00016 L=40

(1457)
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Table3. Estimation performances of Example 3.

method @ @z rms {@,) rms (@,) 5@, 8§ (a,) g;i;gr:eter
TK 0.7226 1.0368 0.0007 0.0007 0.00001 0. 00005 L=50
MESPRIT 0.7226 1.0368 0.0007 0.0007 0. 00007 0. 00009 L=60
Table 4 . Estimation performaces of Example 4.
_ N N - N N design
method w, W rms (&,) rms (&,) & (@) 8 (@) parameter
TK 0.7224 0.8170 0.0005 0.0003 0. 00020 0.00019 L=60
MESPRIT 0.7225 0.8169 0.0005 0.0003 0.00014 0.00013 L=60
realizations are run. Estimation performances are
listed in Table 4. '1.06 . — 1.06
The following comments are made from the 105} 1 1osf 1
last two examples: m‘T e T LOAE ot e,
(i) The MESPRIT and TK methods can pro- ¥ {1 wep ”
vide better estimates for longer data even Lozt 1.02r
if the SNR is lower, ¢f Example 1 and 2. 1015 3 n s L0l 5 n r;
This coincides with the theoretical conclu-
sion that for large ssamples (i.e., N — o9) 075 0.75
they can give consistent frequency estimates. (mT 1 o7}
(i) Although the SNR are low, the MESPRIT 0nt 1 onf ﬂ
method still gives accurate results, especially on} D o.nr
when the frequency difference is small 071} i ont
0‘70 2 4 6 0'70 2 4 6
In all the examples above, we have set the in-
itial phases to zeros, which is not necessarily true (a) TK . (b} MESPRIT
in the practical situations. Although the initial
phases can be estimated by some techniques, they Fig.3. Frequency estimates with diffrerent initi-

may affect the estimation accuracy. In the follow-
ing, we give a example.

Example 5. (short data, initial phase sensitivity)

The tested process is now given by the follow-
ing:

y(t) = /2 sin(0.7226t) + /2 sin(1. 0367t+¢) +e(t)
(24)

We have taken one realization from Example 1
and estimated the frequencies using the ‘‘best”
design parameters in Table 1 for a number of
initial phase values: {=[0,n/4,m/2,3n/4,n,57/4,3n/
2,7m/4]. Estimation results are shown in Figure 3.

al phase (0,7/4, n/2, 3n/4,m, 57/4,37/2,
7n/4) of Example 5.

We can see from Figure 3 that the estimates
from the MESPRIT and TK methods are not so
sensitive to the initial phases, no matter whether
the number of data is large or small. This is well
understood, in MESPRIT and TK methods for
instance, since (5) and (6) carries no information
about the initial phases. Though we have used one
noise realization in simulation, the conclusion
should hold for many realizations.

(1458)
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Example 6. (short data, sensitivity to noise)

The process in this example satisfies Example 1
except that SNR is varied. We have analyzed the
sensitivity to noise and estimated the frequencies
using the ‘‘best”” design parameters in Table 1 from
a number of SNR’s, namely, [0, 5, 10, 20, 40
(dB)]. The performances are summarized in
Table 5, Table 6 and Table 7.

The following comments are made from Ex-
ample 6.

(i) The MESPRIT method is shown to be as
good as TK method in terms of Sampled
means root mean squares and relative biases
for high SNR.

(i) For the MESPRIT method, the lower SNR

Estimation of Frequencies of Multiple Sinusoids by the Modified ESPRIT Method
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In the previous sections we concetrated our-
selves only on the white measurement noise, the
colored case was not studied. Below we give an
example in which the noise is a moving-average
process.
Example 7.

(short data, colored noise, robust-

ness).

This example is the same as Example 1 except
that e(t) is a MA process of order 3:

e(t)=c(1)—0.823 e(t—1) +1.151 (t—2)—0.305 ¢ (1 3)

(25)

where €(t) is an uncorrelated random sequence of

is, the smaller eigenvalue difference  0a2m’ zero mean and variance 0.0251. This corresponds
O2mrt1 1S
Table5. Estimated sampled means of Example 6.
SNR 0 5 10 20 40 design
parameter
@, 0.7227 0.7227 0.7227 0.7226 0.7226
TK L=35
w: 1.0371 1. 0367 1. 0367 1. 0367 1. 0367
28 0.7230 0.7227 0.7227 0.7226 0.7226
MESPRIT L=40
W, 1. 0362 1. 0362 1. 0363 1. 0366 1. 0367
Table 6. Estimated rms’s of Example 6.
SNR 0 5 10 20 40 design
parameter
rms (@) 0. 0067 0.0036 0.0020 0. 0006 0. 00006
TK - L=35
rms (@,) 0.0085 0.0046 0.0025 0. 0008 0. 00008
rms (&) 0. 0068 0.0037 0.0020 0. 0006 0. 00008
MESPRIT L=40
rms (@,) 0. 0081 0.0043 0.0024 0. 0008 0. 00008
Table7. Estimated relative biases of Example 6.
design
SNR 0 5 10 20 40
parameter
TK & (&) 0.00015 0.00023 0. 00019 0. 00008 0. 000008 L—35
& (&,) 0. 00038 0. 00009 0. 00010 0. 00005 0. 000006
&Ma) 0. 00055 0.00022 0. 00012 0. 00004 0. 000004
MESPRIT L=40
& (i) 0. 00055 0. 00051 0. 00040 0.00014 0.000014

(1459)
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Table 8 . Estimation performances of Example 6.

method o @, rms (@,) rms (@,) 8@y 8 (@,) gi:;gnr:eter
TK 0.7228 1.0369 0.0009 0.0006 0.00032 0.00017 L=25
MESPRIT 0.7228 1.0370 0.0009 0.0006 0.00033 0.00024 L=25
to SNR =11 dB. via rotational invariance techniques,” Ph.D
Estimation performances are evaluated using Dissertation, Dept. of Electrical Engineering,
the methods developed for white noise in the Stanford University, CA., 1987.
previous section. Results are provided in Table 8. [2] R. Roy, A. Paulraj and T. Kailath, “ESPRIT-
For the MESPRIT and TK methods, the fre- a subspace rotation approach to estimation
quency estimates are very accurate, even if the of parameters of cisoids in noise,” IEEE
" noise level is low. We may say that they have Transaction on Acoustics, Speech and Signal
certain robustness. This can heuristically be Processing, vol. ASSP-34, pp. 1340-1342,
argued as follows. Due to the low noise level, the 1986.
eigenvalues and eigenvectors of the MESPRIT (3} D.W. Tufts and R. Kumaresan, “Singular

matrices of colored noise are not much perturbed
from those of white noise. In other words, the
signal subspace is less perturbed than the noise
subspace in this example, so the MESPRIT method
can work to some extent.

V. Conclusions

A modified ESPRIT (MESPRIT) method for
harmonic retrieval was presented and studied for
the problem of estimating the frequencies of
sinusoidal signals corrupted by white or colored
measurement noise in this paper. Monte-carlo
simulation examples were conducted for the
MESPRIT and TK methods. Results of sampled
mean, root mean square and relative bias were
compared.

The following conclusions are drawn:

(i) When modeling the sinusoids-in-noise pro-
cess, a high-order model is preferred in order
to achieve better estimation accuracy.

(i) When only short data records are available,
it is advantageous to choose the MESPRIT
and TK methods. Furthermore the esti-
mates from MESPRIT method may be not
sensitive to the initial phases as TK method.

(i)The MESPRIT method is shown to be as
good as TK method in terms of sampled
mean, root mean square and relative bias of
estimated frequencies for high SNR’s.
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