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for Controlling the Mean of a Continuous Production
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ABSTRACT

Cumulative sum schemes based on a weighted score are considered for controlling
the mean of a continuous production process; in which both the one-sided and two-
sided schemes are proposed. The average run lengths and the run length distributions
for the proposed schemes are obtained by the Markov chain approach, Comparisons
by the average run length show that the proposed schemes perform nearly as well as
the standard cumulative sum schemes in detecting changes in the process mean, Com -
parisons of the one-sided schemes by the run length distribution are also presented.,

1. Introduction

This paper considers the problem of detecting changes in the mean of a continuous
Production Process, Samples of fixed size n are taken successively form the process at
regular time intervals, The proposed schemes use the sample means X], j=1,2,---, which
are independent and normally distributed with mean z and finite known variance o /n.
In this paper, without loss of generality, we will assume that #o=0 and o? / n=1, where
#o 1s the target value of the process mean.

The cumulative sum(CUSUM) schemes originally proposed by Page(1954) have been
widely used in industrial situations due to their sensitivity in detecting deviations in the
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process mean from the target value #o| The procedure for one-sided CUSUM schemes to
detect increases in the process mean, called high side CUSUM schemes, is based on the
CUSUM’s

Su(j) =max[0, Su(j 1)+ X;-K1J,
) (1.1)

where Su(0)=0 and corrective action is taken when Su(j)>h where & is the so-called
decision interval of the procedure. Also the positive real number K is the reference value
of the procedure, The reference value K is usually set equal to ¢ / 2 since this value min-
imizes the average run length(ARL) at a mean shift of ¢ from the target value for a
given ARL at the target value(see Bissell, 1959; Ewan and Kemp, 1960; Reynolds, 197
5). The procedure for low side CUSUM schemes to detect decreases in the process mean
is based on the CUSUM’s

SL(j)=min[0, S.(j-1)+X,+K],
j=12,-",

(1.2)

where S.(0)=0 and corrective action is taken when S ()< -h

To detect changes in the process mean in either direction, two separate one-sided sch-
emes based on the CUSUM’s in(1.1) and (1.2) which are run concurrently are customarily
used. This two-sided CUSUM scheme signals for corrective action either when Su(j)>#4 or
when S (7)< -h.

Munford(1980) proposed cumulative score control schemes in which scores of +1,—1
or 0 assigned to sample means are cumulated. Ncube and woodall(1984) proposed comb-
ined Shewhart-cumlative score control schemes by adding the Shewhart action limits to
the Munford’s schemes. Despite of the simplicity in calculating the ARL'’s for these sch-
emes, they are much less sensitive to shifts in the process mean than the standard
CUSUM schemes. To increase the sensitivity we consider two procedures in which a
weighted score w(>2) is used to augment the Ncube and Woodall procedure, Like the
Ncube and Woodall’s procedures, each of our procedures can signal an out-of -control
situation at any stage.

The one-sided cumulative score schemes based on the weighted score are proposed in
Section 2. Comparisons by the ARL with the standard CUSUM schemes are made. Com-
parisons by the run length distribution are also presented. In section 3, the two-sided
schemes are developed and compared with the standard CUSUM schemes in terms of
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the ARL. The ARL’s and the run length distributions for the proposed schemes are
exactly obtained by the Markov chain approach.

2. One-Sided Control Schemes

2. 1 Control Procedures

In this section we are concerned with the problem of detecting changes in the process
mean in the positive direction. If we want to detect changes in the mean in the negative
direction, the low side schemes can be obtained by slightly altering the high side schemes
for detecting increases in the mean.

To costruct new procedures for the one-sided control schemes, we classify the sample

mean X, into an integer-valued random variable Y, as follows:

2h, kS <X,‘— k,

w, k2 <)_(,'— k .Slkg,
1; kl <Xz_ & Skz,
Y= -
0, <R~k <k, (2.1)
-1, ke <X—k <,
-1, Xi—k <-k,
1’:1’2’...,

where K, k,k;, and &, (k,<k,<ks, 3<k;) are positive real numbers, and w and #(2<w<%)
are positive integers, Note that K and % are reference value and the decision interval for
the control procedures, respectively.

We classify the sample means into the scores in(21) for three reasons. First, it seems
reasonable to assign a score -1, 0 or 1 to each sample mean according as it falls between
about -1.5 and -0.5, -0.5 and 0.5, 0.5 and 1.5, respectively. Second, it is desirable to assin
a heavy score(>20r<-2) according as it falls between about 1.5 and #, or falls below about
-1.5. Third, it is also desirable to assign a score 24 as it falls outside 4, so that a rectifying
action can be quickly indicated when the process mean has shifted.

Under the assumptions of the distributions of X, ,=1, 2, ---, the random variables Y,
1=1,2,.--, are mutually independent and identically distributed with probability mass

function
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Pr(Y,=2k)= 1— ¢ (K-+ky—p)= D,
Pr(Y=w)=¢ (K+ky—p)— ¢ (K+k,—p)= D;,
Pr(Y,=1)=¢ (K+k,—x)— ¢ (K+K,—p)=D,
Pr(Y,=0)=1— (p,+p.+petpst+Ds) =Dy, (2.2)
Pr(Y;=-1)=¢ (K—k—p)— ¢ (K—k,—p)=p,
Pr(Y.=-w)=¢ (K—k,—#)=D, ,
=12,

where ¢ () is the standard normal cumulative distribution function.
We consider the following two types of control procedures for the one-sided schemes.

Rule I: S;=max[0, S;,+Y,], /=12,

and
Rule I1: S,= | 0, S;1+Y,<-h
i Sia+Y,, otherwise,
j: 1,2,' -,

where in either case, So=0 and corrective action is taken when S;>h. Our procedures
without the weighted score, w, are the combined-Shewhart cumulative score control pro-
cedures of Ncube and Woodall(1984). If #=0 and k,=o0, our procedures become the
cumulative score control procedures of Munford(1980). If 4=1, in addition, they corresp-
ond to the Shewhart(1931) control procedure,

2.2. Markov Chain Approach

In order to obtain the ARL’s for our schemes, we apply the Markov chain aproach. It
is easily seen that both the sequences of our random variables S;, 7=1,2,---, in Rule I and
Rule I form Markov chains. The state spaces of these Markov chains are {0, 1, -, 4}
for Rule I and {-A+1, -h+2,+- i} for Rule II, where the decision interval h is the
absorbing state. In this paper, our interest is restricted to the case where the cumulative
scores(CuScore’s) start out at state zero.

The explicit form of the transition probability matrix P for Rule II, as a example, for
the case where w=2 and h=4 is given by
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-3 -2 -1 0 1 2 3 4
3 [ D Ps Ds pi+Dp. 0 0 0 De
-2 . Ds P pi+Ds 0 0 0 . Ds
-1 D D, Dy D, Ds 0 0 1 D
P= 0 0 jof o2 Ps Ds Ps 0 : DPs
1 0 0 jo | & Ps Ps Ps : Ps
2 0 0 0 Dy D, Dy P | Dot
3 0 0 0 0 o D Ds 1 DitDs+Ds
4 Lo o o T TTo T T ToT T T T o1 1T

If we represent the transition probability matrix P for Rule I and Rule II in the partit-
ioned form, P becomes

R |
el (2.3)
g
where y is a vector of & elements for Rule I and of 2h-1 elements for Rule II. Also the
vector QT is the transpose of a vector which has each of its elements equal to zero. R is
an 4 Xk matrix for Rule I and a (24— )% (2k—1) matrix for Rule .
Let N; be the run lenth for the scheme which starts out at state 7 and let L.=E(N;),
the expected value of N;. From Cox and Miller(1965), then, it is easily seen that the
ARL’s for the proposed schemes can be obtained from the vector.

L=(I-R)™L, (2.4)
and the run length distributions can also be obtained from the following matrix operations
Ne=(-R)L (2.5)
and
yrzRNr_‘er_g\}I], r=2,3, ...... (2'6)

As an example, the vector N for the Rule I schemes is represented by

Ne={Pr(No=r), Pr(N;=r), -+, Pe(Np,=r)}T,




140 Byoung-Chul Choi and Sung H. Park

2.3. Choice of Schemes

Now we want to choose the appropriate values of the weighted score w, the decision
interval % and the classifying real numbers %, %, and #;, so that the proposed schemes will
have desirable properties, The schemes should be chosed to give low ARL'’s at unsatisfa-
‘ctory quality levels for given in-control ARL’s , so that changes in the process mean could
be quickly detected. In this section, we are concerned with the case where the schemes
give minimum ARL(0.5) values for given approximate ARL(0) values of 100, 590 and
940. Note that ARL(0.5) is the ARL when the process mean remains at the value 0.5,
the amount of shift in the process mean. In order to find these schemes, we use a refer-
ence value K=0.25 since this value seems to minimize the ARL when £=0.5 for a given
ARL when #=0.

For given w=2,34 and 5, first, we find numerically the values of ki, ks, ks, and 2 in
the order named at in-control situation which give the ARL(0) values of

1000 < ARL(0) < 1002,
590.0 < ARL(0) < 5904, (27)
940.0 < ARL(0) < 9410

with fine grids. In each condition in (2.7),the relative error of the actual ARL(0) value
from the nominal ARL(0) value will be less than 0.002. The fine grids are £=0.4(0.01)
1.0, k2, =1.4(0.01)2.0, | %=3(0.1)5 and % =3(1)20, where a(b)c denotes a, a+b, a+2b,
- C.

Once the values of A, ks, ks, and 4 for given w under each condition in (2.7) are det-
ermined, we can evaluate the ARL(0.5) values using the determined values.

Under each condition in (2.7), finally, we choose the values of w, K,, &, ks and % of
which the scheme gives the lowest ARL(0.5) value. If a scheme has this property, it will

be called the optimum scheme for a given ARL(0) value.

2.4. ARL Comparisons

We compare three types of schemes for approximate ARL(0) values of (a) 100, (b)
590 and (c) 940. First, comparisons for the case where the schemes initially start out at
the target value, zero, are given. In Table 1, we list the ARL’s for the CUSUM, the
optimum Rule I and the optimum Rule II schemes together with their design points, The
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ARL'’s for the CUSUM schemes are obtained from 'the Markov chain approximation by
an extrapolation technique, which is presented in Ap;pendix.

Table 1. ARL Comparisons of One-Sided Control Schemes

(a) ARL(0)=100

Scheme Design Point ARL(00) ARL(05) ARL(1.0) ARL(20)
h=5 k,=0.49

Rule I: K=0.25 k=150 100 15.56 6.97 3.37
h=2 k=32
h:4 k1=0.45

Rule II: K=0.25 k=150 100 14.59 5.87 2.80
w=2 k3=3.4

CUSUM: h=4.42 K=0.25 100 14.85 6.62 3.17

(b) ARL(0)=590

Scheme Design Point ARL(0.0) ARL(05) ARL(1.0) ARL(20)
h=8§ k,=0.61
Rule I: K=0.25 k,=1.52 590 2943 11.68 5.18
=2 k=34
h=6 k,=0.60
Rule II: K=0.25 k,=1.59 590 26.51 944 444
h=2 ks=4.5

CUSUM: h=758 K=0.25 590 27.10 10.83 4.97
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(c) ARL(0)=940

Scheme Design Point . ARL(0.0) ARL(05) ARL(10) ARL(20)
h=9 k,=0.52

Rule I: K=025 k,=1.50 940 32.83 13.01 6.31
h=2 k3=4.2
h=7 k,=0.55

Rule II: K=0.25 k,=1.52 940 29.74 10.47 492
wW=2 ky=3.9

CUSUM: h=8.47 K=0.25 942 30.63 12.02 548

From Table 1, without rerard to the ARL(0) values considered, we can see the follow -
ing facts: (i) The Rule I schemes perform nearly as well as the CUSUM schemes. They
also have uniformly lower ARL’s than the Munford’s(1980) and the Ncube and Woodall's
(1984) schemes except the case ARL(0)=100 and # =2.0 (compare our Table with Table
1 of Ncube and Woodall, 1984), (ii) The Rule II schemes appear as if they are even more
sensitive than the CUSUM schemes.

Now we check the performance of the Rule II schemes by comparing the so-called
steady state ARL’s (Crosier, 1986). A shift in the process mean in the industrial situation
frequently occurs after the process has been operating for some time, The steady state
ARL is the average additional run length after the mean shift occurs. All the CUSUM
and CuScore’s of the compared schemes may not be zero when the shift occurs. Especially,
the CuScore of Rule II probably tends to be on the low side when the process is in-control,
so the rule II schemes may take longer to detect than the other two types of schemes.
So we need to compare the steady state ARL'’s. Table 2 gives the steady state ARL’s
obtained by the aerage of 1000 simulations for each case. In this simulation, 32 observa-
tions were taken before the mean changed and the sequence of observations was discarded

if a false signal occurred during the first 32 observatons.
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Table 2. Steady State ARL Comparisons for ARL(0)=100 by Simulation

Scheme ARL(0.5) ARL(1.0) ARL(2.0)
Rule I 13.78 5.63 2.86
(15.56) (6.97) (3.37)
Rule II: 14.57 6.28 3.18
(14.59) (5.87) (2.80)
CUSUM 13.09 5.59 2.67
(14.85) (6.62) (3.17)

Numbers in parentheses are the ARL’s in TABLE 1.

From Table 1 and Table 2, we can conclude that the Rule I schemes performs nearly
as well as the CUSUM schemes but the Rule II schemes don’t perform so well as the
others, The performance of the Rule II schemes in Table 1 appeared better than the others
because the ARL’s were determined using a starting value of zero, We can expect similar
results for ARL(0)=590 and 940.

2.5. Comparisons in Terms of Run Length Distribution

Figure 1 shows the plots of the run length distributions for the schemes of three types
compared in Table 1. We show the plots for the cases where ARL(0)=100, ~=0.0, 0.5
and 1.0. The run length distributions for the CUSUM schemes were obtained with the
Markov chain approximation having 41 states labeled 0,1---, 40, where the last state 40
is the absorbing state(see Appendix for details).
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Figure 1. Run Length Distributions for One-Sided Schemes, ARL(0)= ioo
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From Figure 1, we can easily see the following facts: (i) In all cases, the behabiours of
the run length distributions for the CUSUM and the Rule I schemes are quite alike, (ii)
The Rule II schemes have greater probabilities of short run lengths than the CUSUM and
the Rule I schemes in the in-control situation, Note that in the cases where ARL((Q)=5
90 and 940, similar results have been derived. Details for other distributions are available
from authors.

3. Two-Sided Control Schemes

We now consider schemes in which deviations in the process mean from the target
value in either direction call for corrective action to be taken, A two-sided procedure we
consider, which will be referred to Rule III, is made up by the two one-sided Rule I's; one
to detect increases in the process mean and the other to detect decreases in the process
mean. Also, the two one-sided Rule’s are run concurrently and separately.

In order to obtain the ARL’s for the Rule III schemes, we also apply the Markov chain
approach. We can find that two dimensional CuScore’s (SH,, SL;), 7=1,2,--*, in Rule I,
form a Markov chain, where SH,’s and SL;’s are the corresponding Cuscore’s to detect
increases and decreases in the process mean, respectively. The state space of this Markov
chain is {(4,5); i= 01, &, =0, -1, ---, -h. A state (ij) represents SH; in state / and
SL,; in state j. Any state(s,j) with =4 or j= -4 is an absorbing state. If we combine all
absorbing states into a single absorbing state, the transition probability matrix can be
represented by the same form in (2.3). Therefore, the ARL’s for the Rule III schemes
can also be obtained by the matrix operatin in (2,4).



146 Byoung-Chul Choi and Sung H. Park

We want to find the desired schemes when the ARL(0Q) values are approximately 10
0 and 470. The procedure for finding the optimum schemes is the same as that in Section
2. First, the optimum design points for the high side Rule III schemes are found under
the conditions

200.0<ARL(0)<200.3,
940.0<ARL.(0)<941.0,

for the sake of using the results obtained in Section 2. Note that the reference values are
also fixed to 0.25. And then, the ARL’s for the proposed two-sided schemes are evaluated
at these desin points through the matrix operation in (2.4).

In Table 3, we list the ARL’s for the two-sided schemes with their design points, The
ARL’s for the CUSUM schemes are obtained from the Markov chain approximation by
extrapolation(see Appendix for details).

Table 3. ARL Comparisons of Two-Sided Control Schemes

(a) ARL(0.0)#IOO

Scheme Design Point ARL(0.0) ARL(05) ARL(1.0) ARL(20)
h=6 k,=0.53
Rule III: K=0.25 k,=1.55 104 20.48 8.74 4.26
w=2 k,=3.9
CUSUM: K=0.25 h=5.60 104 19.36 8.20 3.84

(b) ARL(0.0)470

Scheme Design Point ARL(0.0) ARL(05) ARL(1.0) ARL(2.0)
h=9 k,=0.52
Rule III: K=0.25 k,=1.54 479 32.83 13.01 6.31
CUSUM: K=0.25 h=8.47 479 30.63 12.03 548

From Table 3, without reard to the ARL(0) values considered, we can see the following
results: (i) The Rule III schemes have sensitivities close to the CUSUM schemes as in the
one-sided case. (ii) From our Table 3 (b) and Table 2 of Ncube and Woodall(1984), it
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is seen that the proposed two-sided schemes are more sensitive than the Shewhart (193
1), the Munford’s (1980) and the Ncube and Woodall’s schemes,

4. Conclusions

A cumulative weighted score procedure has been proposed and compared to other pro-
cedures on the basis of the ARL and the run lenth distribution. The Rule I and the Rule
III schemes are found to perform nearly as well as the standard CUSUM schemes. The
proposed schemes may be more practical than the CUSUM schemes becase they are
simple in dealing with data, that is, it is sufficient to cumulate integers 0, +1, -1, 4+2 and
-2 only after measuring with the eye in which range the observation falls (see Section
2.1). Another advantage of the proposed schemes is the fact that the ARL’s and the run
length distributions can be exactly obtained, while those of the CUSUM schemes are
obtained by Markov chain or Wald’s appoximation. Also, the proposed schemes can be
applied to a scale problem which would be rather complicated.
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Appendix. Markov Chain Approximation

The use of Markov chains to calculate the approximate ARL’s and the run length
distributions for the one-sided CUSUM schemes was discussed by Brook and Evans(19
72). They replaced the continuous CUSUM scheme by a discrete one that has t+1 pos-
sible states, 0, 1, -+-, t, where t is the absorbing state, The ARL vector for the one-sided
CUSUM schemes can be calculated by the matrix operation in (24).

In this paper, the ARL'’s for the one—sided CUSUM schemes were calculated for five
different size Markov chains with t values of 10, 20, 30, 40 and 50. For the two-sided
CUSUM schemes the sizes of Markov chains are t*+1, where t=7, 8, 9, 10, 13 and 16.
And then, extrapolations to the asymptotic ARL’s for t=co were accomplished by fitting
the following regression formula to the ARL'’s which were obtained from Markov chains
with the stepwise regression search procedure.

ARL(t)=ARL(o0)+A /t+B/t*+C/t*+D/t" (A1)

Note that the coefficients of determination after fitting the regression model (A.l) are
all greater than 0.99.



