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ABSTRACT

We consider two semiparametric regression lines where the density of the error terms
are unknown, We give simultaneous estimators of the differences of intercepts and
slopes which turn out to be asymptotically minimax as well as efficient in semiparam-

etric sense.
1. Introduction
Consider two simple linear regression models;

Y= a+ BX+ & (1.1)
Y= a,+ B,X,+ &,

where a,, a,, 3, and 8, are regression parameters, X, and X, are independent random
covariates with a common density h and ¢, and ¢, are independent random errors with
a common density g. Throughout this paper errors are assumed to be independent of co-
variates, This is just a stochastic version of the usual simple linear regression models,

Y= a1 +53X+¢;
(1.2)
Y= ay+8:Xp+&
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where X;; and X, are known constants,

Our interest here is in the estimation of (a,-,) and (8,-8,). The classical approach for
this problem is the least squares method which has been shown to be optimal if the errors
are iid. normal. But it is well-known that least squares estimates suffer from being sen-
sitive to outlying observations, which often come from long-tailed error distributions, hence
losing efficiency if the actual error distribution has long-tail.

The precise error distributions are not known in almost all the cases. Hence it can not
be said that an estimator, optimal in an assumed error distribution, is optimal actually. One
may release the assumptions on the error distributions and try to find the best possible
estimators in those situations, The resulting models are called “semiparametric models”
where the error distributions are set to be totally unknown. The first thing one has to do
is to find what is the best one can do, mostly in asymptotic sense. Asymptotic efficiency
and minimaxity have been used widely in large sample theory as criteria for identifying
good estimators. Begun et al. (1983) characterizes the estimators achieving these two
optimalities through the representation theorem and the asymptotic minimax theorem in
semiparametric sense. Their work follows Hajek (1970, 1972)’s parametric settings and
Le Cam (1972)’s general settings. Briefly speaking, estimators which achieve the informa -
tion bounas and asymptotic minimax bounds of the least favorable regular parametric
submode! are shown to be asymptotically efficient and minimax respectivelv.

The construction of asymptotically minimax and efficient estimators of (a,-a;) and
(8,-5,) in the model (1.1) with g unknown is our present theme. A simple two-sample
generalization of Example 2 in Bickel (1982) and Example 1 in Schick(1987) turns out
to yield asymptotically efficient estimators although Bickel’s estimator uses only a part
of the sample to estimate the unknown density g. Hence the main point of this paper
should be addressed on the construction of asymptotically minimax estimators but it turns
out that our estimators are asymptotically efficient as well,

In section 2 we will find the information and minimax bounds for our present regression
models. In section 3, the estimators are constructed and the proof of the Theorem 3.1 is
deferred to section 4.

2. Assumptions, information and minimax bounds
The model (1.1) can be reparametrized as follows,

Yl= (1+ ﬁxl-*—é‘,
Y= (a+A)+ (B8+0)X,+ & (2.1)
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The common density h of covariates is assumed to be known and have a finite second
moment, The minimal condition on g is § (g2/g)(y) dy < o where g is the first deri-
vative of g. The parameters of interest are (A¢) and the nuisance ones are (a,8,g). We
Aobserve (X, Y,Zy),++, (Xn,Yn,Zn) where Z,= 0 if (X,,Y;) comes from thc first sample and
‘Z;— 1 otherwise. If we assume that the proportion of Z= 0 is p (0<p<1), then the
density of (X, Y.,Z;) is

f(xy,06,2)= pg(y-a-Bx)h(x)
f(xy,z0,8)= (2.2)
f(x,y,9.8)= qg(y-a-A-(8+d)x)h(x)

where g= (a,8A7) and g= 1-p.

The information for estimating parameters of interest in semiparametric models is I,=
§ £*¢*7dP where P is a probability measure having the true density f and #* is the com-
ponent of the score function for the parameters of interest which is orthogonal to all
nuisance parameter scores, For further details see Begun et al.(1983) or Bickel et al, (19
89). For the model (2.2) the score function for (Ad) is

~la/an)e -Z(é/g)(Y-a-A—(ﬂ—i-d‘)x)
Qrsnel | J
(2/29)¢ -x2(g / g) (y-a-A-(8+4)x)

where /= 4(x,y,2,6,2)= log f(x,y,2,4,g). We first obtain the orthogonal component of 4,

to the scores of the nuisance parameters (a,8). Observing that the score function of (a,
B)is
. a/aa)l] [-Z(é/g)(y-a-A(ﬁ+d‘)X)(1-2)(é/g)(y-aﬁX) }
£1= -
3/08)¢ x2(g/ g Ny-a-8-(B+6)x)-x(1-2)(g / g) (y-a-Bx) ],

we see that it is

L a(1-2)(g/ g)(y-a-Bx)-pz(g / ) (y-a-A-(B+8)x)
lz"r([zl [4])=4t.-qb,= [ ] 2.3)
ax(1-z)(g / g)(y-a-Bx)-pxz(g / g) (y-a-A-(B+a)x)
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where (- | M) is the Qrojection operator on M in L?(x) (#: Lebesgue measure) and
[4,] is the linear span of £,. The space of the scores for g, which is called “tangent space”,
is given by {zt(y-a-A-(B+0)x)+(1-2)t(y-a-8x) | §t(x)g(x)dx=0}. See Bickel et al.
(1989) for the precise definition of tangent space. The function given in (2.3) is already
perpendicular to this tangent space. Hence it is the “efficient score function” £* for esti-
mating (A¢). This means that we can estimate (A¢') asymptotically as well not knowing
g as knowing g, so called “adaptation is possible”.

In the sense of Begun et al (1983) and Bickel et al. (1989) an estimator Po= (ﬁn,gn)
is called “asymptotically efficient” if for every sequence (gn,gn) such that | n'?(gn-9)-sl
—0 and || n**(gn"?*-g"?)-t | . — 0 as n—oo for some s€ R* and t € L*(«)

n"%(Pn-Pn) = N(O, I3} ) (2.4)

as n—oo under the probability measure P, ., having a density f( - ,gn,8q) wWhere
Pn= (BnGn), I - |l . is the usual L? norm with respect to Lebesgue measure ¢ and

L= §¢¢7dP= pqle [EIX gz]

where Ig= § (g2/g)(y)dy. And an estimator is called “asymptotically minimax” if

lim lm sup Eo, g, £(n(5a-pa)) = E4(Z0) (25)
A e

where ¢ is a subconvex loss function (see Begun et al. (1983) for definition) and
Z.~N(0, I3!). If £ is restricted to be bounded it suffices to show that

n"*(Pn-£n) = N(0, 1) (2.6)

under P, for any sequence (gn,gn) such that n'*| gn-¢| = M, and n** I gn'?-g"%| =
M, for some M, M,>0. A simple argument for this is presented in Beran (1981) and Millar
(1984). Note that (2.6) simply implies (2.4). So an estimator Pn satisfying (2.6) is asym-
ptotically efficient as well as asymptotically minimax. In next section such an estimator
will be constructed.
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3. Main Results

We now construct an estimator which satisfies {2.6). The idea is to use LeCam’s one-
:-step MLE as in the classical estimation of the location problem:
(a) Find a good estimate g, of 9= (p,n) where p= (Ad) and n= (a,8).
(b) Construct a suitable estimate #* (x,y,28. X,YnZy, ", Xn,Yn,Zn) of £*(x,y,26,2) and
form

ﬁn= ﬁn+n-;ﬁl i:l 2* (Xi,Yi,Zi,g-n; Xl,Yth,'”,Xn,Yn,Zn) (3'1)

-~ n ~ A
as the proposed estimator where L= n? 3 20T (X;,Y; Zj.0n: X,Y,Z,, -+, X, Yn,
=

Zn) and go= (Pn7n) is a discretized version of g, (see Bickel (1982) or Appendix
in Le Cam (1960) for explanation of discretization). For simplicity, we will suppress
X,Y1,Z,,++, X0, Yn,Zn in the expression of #* from now on,

For (2.6) it suffices to show that

(A) n**(#n-9) is tight under the probability measure Pi,gn,
(B) nl/z S ﬁ(xyyvzygﬂ) f(X1Yvagn)g) dXdy=OP9n,8n( 1 )’

(C) Erpe, § | £°(x9,20)-£(%,3,200) | H(%,y.2608) dxdy= o(1),
(D) n** | 85(x,y,28)-&(x,y.28) | < La,

(E) 02| (3/ 20)(xy.26) | <M,

(F) n*| #(xy,z0)| < Np

where Ps.g. 15 specified just below (2.6), 2}‘ is a cross-validated estimator of #* ie., 2}‘=
& computed from the sample deleting (X,,Y;,Z;) and Lp, Mn, Ny are constants converging
to zero, The reason for this is given in Park (1988).

Now note that even if we are interested only in p= (Ad), we need to estimate 7=
(a,8) as we can see in (3.1). But obviously # is unidentifiable since a change in « could
be hidden by the same location change in g. However, without loss of generality, we can
restrict g to the densities satisfying

§w(y)g(y) dy=0 (32)
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for bounded and antisymmetric ¥ with a bounded positive first derivative. For otherwise
there exists the unique constant a{0) such that {¥(y-a)g(y)dy= 0 and changing «
to a+a and g( - ) to ga( - )= g( - +a) does not alter the density f in (2.2) and satisfies
(3.2) with ga. With g satisfying (3.2), » is identifiable,

PRELIMINARTY ESTIMATOR. Let ¥ be defined as above. Let 7, be the M-estimator
corresponding to ¥, i.e., the unique solution of

> ¢(Yi‘an‘Ean): 0

{7:2i=0) (3.3)
> X4’/’(Yj'&n'ﬁnxj)= 0
{:Zj=0}

Then nlw‘j:}: (Y ;-an-BaX;) and n;"‘(j_z)_: )X«,b(Y -an-BpX;) converge to normal dist- .
ributions under v, g (use triangular array Central Limit Theorem) where n,= # (Z,=

0). Furthermore § (¥)?(x)gn(x)dx is asymptotically bounded since

P (9)2(x) [gn(x)-g(x)]dx | = M| g2 g

u

for some M>(0. Now, following the arguments appeared in pp. 805-6 of Huber(1973), we
can conclude that n'?|%a-7n|= Op, ., (1) and together with this and n** 170-7) =0(1)
we obtain that n*?| 7a-7] is tight under P,q. Similar arguments can be applied to
the estimator of (a+4, A+¢) defined by the same way as in (3.3) and taking differences
between these two estimators yields a /E -consistent estimator p, of o= (A¢) under the

probability measure Py, ;..

OPTIMAL ESTIMATOR. Now we will construct a suitable estimator of £*. Let K be a
logistic density function, ie, K(w)= e™(1+e™¥)? We estimate the unknown density
g by 2( - Gn) where

g2(y,6)= batn7bi {ZK{b-‘ (y-YA (a+8)+(B+8)X) (| X; | Sca)
F(1-Z) Kb (y-YeAatBX)N( | X, |Sca)),

bn—0 and c,—c0 at some rates to be specified later. Define

h(y.g)= (i /aNE(ve)/E(v.a).
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The estimator of £*(x,y,z9.8) is defined by
q(1-2)h(y-a-Bx,9)-pzh(y-a-A- (B+8)x,9)
(xy,z0)= ](3 4)
a(1-z)xh(y-a-Bx9)I(I x |=cn)-pzxh(y-a-A-(8+06)x,9)I(| X |<cp)
and the asymptotically optimal (efficient and minimax) estimator is given by
~ A~ noa _
Pn= Pp+n1™ z}r (X,,Y:,Zi8n)
~ n A ~
where [,= n™? g}ll*é’*T(X,-,Y,-,Zi, 6n). Let {bn} and {ca} be such that
nbpcy — oo,
Theorem 3.1.  Under the assumptions stated in Section 2,
120 Pénsgn -1
n**(pn-pn) 2% N(O, L)
for all the sequences (gn,gn) such that n'?| gn-g | = 0(1)=n"?| g% g*?|..

As we mentioned it at the end of Section 2, the above theorem implies that g, is asy-
mptotically minimax in the sense of (2.5) for bounded subconvex loss functions, The proof
of the theorem is given in the next section,

REMARK. We can simply extend the above results to multiple linear regression problems
where we are interested in estimating the differences between two corresponding regre-
ssion coefficients,

4. Proof of Theorem 3.1

We shall have to show (B)~(F) in Section 3. First (B) is obvious since § IA“ (X,¥.,2,6n)
f(X,y,2,0n,g) dxdy= 0, We will show (D)~(F) first and (C) later. Note that Z* is defined
as in (34) but replacing h by h where f; i(v.0)= (a/ ay)gi(v.6) / (v,6) and g;(y.8)=

g(ye)-nbi [ZK{bd (y- Yita+a+(B+0)X) (| X; | Sca)+(1-Z)K{bd (v-Y,+a
+B8X)H( | X; | Sca)]. It follows easily (see Schick (1987)) that

|8 /8-8/8 | <on b2 |



104 Bycong U. Park, Woo C. Kim and Moon S. Song

where §(Y)= (2 /ay)g(y). Thus we have

2(xy,28)- #(xyz0) | SBbE ca (4.1)
for some B,>0. Now (D) is satisfied by (4.1). Note that

n

3(yo)= mbg T {ZK (b3 (y-Yetata+(B+X)I( | X, | Scn)
+(1-Z)K (b7 (y-Yita+BX)I( | Xi | =ca)}.

For the logistic kernel K, | K | =K and we can see that
| #(xy,28) | SBba ca

for some B,>0, satisfying (F). Taking derivatives of g and g with respect to each para-

meter, for example,

(2 /Cﬂ)g(y, )= n"'by’ g (XZK"(bh (y- Yitat+a+(B+)X NI X, | <cn)
+X(1-Z)K (b (y-Yitat+BX)I(| X | cn)}

and observing that | ¥’ | = 2K, it is easy to verify that

|2/ 29)2"(x,y,20) | <Bb
for some B,>0. Therefore (E) is also satisfied. Verification of (C) relies on
Lemma. Under the same conditions as in Theorem 3.1,

Er,, § 1] Blyaml(] x | Sca)-(8/2)(y)|? g(y)h(x)dxdy= o(1)
and

Ep, . § §%¢ | A(yon)l(] x | Sca)-(&/8)(V)]* g(y)h(x)dxdy=o(1)
By the above lemma, (C) is obvious,

Proof of lemma. It is enough to show that

Er, . § | h(van)-(&/2) ()] %)y =0
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as n—oo since h has a finite second moment and fg2/ g<oo, Let

Pn(Y.6n)= EPMné(Y,an)" bn
An(Y,6n)= Ep, ¢ (Y,6n)- bn.

Since qn(y,8n) does not depend on gy, we can fix 6n and proceed as in Section 6.1 of Bickel
(1982) or Section 3 of Schick (1987) to get

§ [an(v.6n) / (@n(3,60)+bn)-(& / 2)(v) Pe(y)dy — 0 (42)
as n—»oo since S,x,>c,, h(x)dx—0 where qn(y,gn) is the first derivative of qn(y,8n) with

respect to y. Also by the same method as in Schick (1987 ) (the bound obtained in (3.1
6) of Schick’s paper comes independent of underlying carrying measures), we can see

B(Y.80) Bu(Y.0n) / (Dn(¥.6n) +br) | *<4n-be (4.3)

Epon,xn

By (4.2) and (4.3) it is now enough to show that

§1 Pa(¥.8n) / (Pn(¥.6n) +bn)-Gn(¥,0n) / (Gn(5,60) -+bn) | (y)—0 (4.4)

as n—oco, But the integrand of (4.4) is bounded by
2b7 { flen(y)-g(v)| dyF<s2be § | gt(y)-g*(y) | dy || gi(y)+e"(y)| dy. (45)

The above inequality is due to Cauchy-Schwarz. The right hand side of (4.5) is now
bounded by 8by’[| gi?-g'* |2 which converges to zero since nbf, — oo,
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