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A Lower Confidence Bound on the Probability
of a Correct Selection of the t Best Populations”

Gyu-Jin Jeong*, Woo-Chul Kim** and Jong-Woo Jeon**

ABSTRACT

When we select the t best out of k populations in the indifference zone formulation,
a lower confidence bound on the probability of a correct selection is derived for families
with monotone likelihood ratio. The result is applied to the normal means problem when
the variance is common, and to the normal variances problem. Tables to implement the

confidence bound for the normal variances problem are provided.

1. Introduction

Consider independent observations X from each of k populations with cdf’s G(x-6:)
(+=1,---k, j=1,--,n). When an experimenter wishes to select the t best populations
associated wth the t largest parameters, he or she chooses a statstic Yi= Y (X, Xin)
with cdf F(y-¢;) and uses the natural selection rule which selects the populations corre-

sponding to the t largest observations Yo, **, Ya-tsp Where Yp=:=Yq are the ordered

Yis (1=1,2,--+ k).
For this selection problem, Bechhofer’s (1954) indifference zone approach suggests to

determine the sample size n, prior to the experiment, to contor] the probability of a correct
selection (PCS)
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k-t

PCS= " I F(y-6m) d[l—IkT F(y-6;1) (1.1)
=1 = kt+1

where g;1) <-+-=gx) are the ordered parameters and F= 1—F. As pointed out by Kim

(1986), this indifference zone approach is clearly formulated from the point of view

of designing an experiment,

Recently, Anderson, Bishop and Dudewicz (1977), Faltin (1980), Kim (1986) and Gupta
and Liang (1988) considered a lower confidence bound on PCS when t=1 as a method
of retrospective analyses, Kim (1986) showed that his lower confidence bound improves
upon or generalizes the otheres when t=1.

This article generalizes Kim’s (1986) result to the case of selecting t best populations,
Section 2 presents a lower confidence bound on PCS when the pdf has the monotone
likelihood ratio (MLR) property. This result is applied to the normal means problem with
common variance in Section 3 and applied to the normal variances problem in Section 4
Tables to implement the lower confidence bound for the normal variances problem are

given.
2. A Lower Confidence Bound on PCS

The PCS in (1.1) is easily shown to be non-increasing in g3, *,8x-t; and non-decreasing

in grk—t+13, -8l Thus we have the inequality
PCS 2 t §"F*'(y+gpcirn— docn) F(y) £(y)dy (2.1)

where f is the pdf of F. It follows from the inequality (2.1) that a conservative lower
confidence bound on PCS can be obtained by constructing a lower confidence bound of
Gx—1+11—6k—t1. Such a technique has been used in Anderson, Bishop and Dedewicz (1977)
and Kim (1986).

The following lemma is an extension of a result in Kim (1986).

Lemma 1. Assume that f(y-g) has the MLR property in y and ¢. Then for any fixed
c >0, Po[Yactiw— Yoo > c] is non-increasing in g;17 and non-decreasing in gxj.

Proof. By symmetry we may assume g=-- =gy Let W,=Y .y, 7= @iy, for i=1,--- k-1,
and let Wy,,<---=W, denote the ordered W,,---, W, with p= k-1. Then by considering
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the orders of W/’s first, we have the following identity:

Py(Y g t0> Yoty + C)
= Po(Y,> W top, mn(Y, W p-t+2)) > W p-tan + C)
+ Po(Yi=Wetw), W) >max(Y, Wep) + C) .

It follows from this identity that the following identities hold:

Py(Ye-t+1 > Yevr +C,  Mmin Wj=2W, = max W;)

p-t+25j<p 1si<p—t

=P,( min (Y,,W;)>W_ iy +C,W p-ysy > Max W;)
T p-t+25jsp I=isp-t

+P,( min W; >W_,, > max (Y,,W;) +c)
T p-t+25j<p 1<isp—t
> _ p — p—t
:IF(Y_01+C) 11 F(Y—7j+c) HF(Y—Uj)f(Y—UP—tH)dY
—o0 j=p—-t+2 i=1
w P _ pt
+f Fly=6r-c) T F(y=7;) 0 F(y=7;=c)f(Y=7,)dy.

j=pmtt2

By differentiating this expression w.r.t. g,, we have

0 } .
T Py(Ye-t+1r > Yory + €, min W; 2W_ 4 = max W)
1 p t+25/<p 1Si<p-t
g P — pt
:_f . 11 ZF(Y—VJ'“"C).H F(Y_”;)f(Y*al+C)f(Y“77p—t+1)dY
- j=p—t+ =1

bl P — p—_t
-§ o F(y-=;) N E(y=n;=c)f(y =0, —C)f(y 7, ) )dy

- j=p—t+2

e P _ pt
=f N F(y-7;)IIF(y—7;-c)
i=1

—o j=p—t+2
[f(y—48,) f(y—c_7p~t+1) _f(y_c_al)f(y_”p—ﬁl) Jay

Since the expression in brackets is non-positive by the MLR property of f(y - g), it follows
that the probability

Po(Yoetsr > Yoy +C, min W; ZW_ ., = max W;)

p-t+2<j<p 1=i<p-t

is non-increasing in g,. Therefore the result regarding gp;7 follows by observing that the
ordering of Wi’s can be replaced by any other permutation of W.’s, The monotonicity in
gx1 can be proved in a similar fashion, and the proof is omitted.

To define a lower confidence bound on PCS, we consider an auxiliary function L int-
roduced by Kim(1986), which is defined by

H(L(w)-w) + H(-L(w)-w) = a (2.2)
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for w=x. /2, where H is the cdf of (Y, — g,)— (Y, — g;)and X., . is the upper a /2
quantile of H(x). Note that the function L(w) is strictly increasing in w=x,,,

The next result presents a 100(1—a.)% lower confidence bound on Oik-t+1]1— O[k-t), Which
is a generalization of a result in Kim (1986).

Theorem 1. Assume that f(y-g) has the MLR property in y and g. Then we have

’

inf Py(grk-t+17-0ik- 1 ZL (Yot - Yan) )= 1—a
8

where L(w) is defined by (2.2) for w=x.,, and 0 for 0=SW=Xa/2

Proof. For any fixed gc—t+1) and g, let A= g4y —-0[k 1. Then it follows from
the repeated applications of Lemma 1 that for all [}

Paz2L(Ygtw—Yas))
:PQ(L_I ( FAN ) = Y(k—tﬂ)— Y(k-t) )
gPQ(L_I(A)g l Y[k~t+1]—Y[k_t] I),

where L 7(0) is defined as x.,; and Y(,; corresponds to gy, (i =k—t, k—t+1). The equality
is obtained when 0111="" =6 = ~°° and f-t+2)=""-=gpg= +co. Furthermore, for any
value of A, we have

P(LY(A)2 Yurr1 Yk )
=1- {H(A— LYa))+ H(—- ~n— L"(A))}

=]—-a

by the definition of L. Thus the proof is completed. K

The next corollary follows from (2.1) and Theorem 1, and it provides a 100(1 -a)%
conservative lower confidence bound on PCS.

Corollary 1. Under the assumption of Theorem 1, we have

PAPCS 2 P) 21— aforallg
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where
Bi= t .2 F(y+L(Yoerw—Yocn)) FE(E(y)dy.
3. Normal Means Problem

Let X; be independent normal random variables with mean z(i=1,---k;j=1,---,n) and
a common variance ¢%. We consider the problem of selecting t best populstions correspo-
nding to iy, -k +1] Where g)=---=p denote the ordered w’s. For the natural
selection rule which selects the populations associated with the t largest sample means
Kae-ton,*, Xao, Where X<+ =Xy, are the ordered sample means, the PCSin (1.1) is given
by

k-t

L k - .
PCS= §7 TI ®(/n (y—p))/ o) d[1-TT (/0 (y—s) /o))

r=1 j=k-t+1

where @ is the cdf of the standard normal distribution and ® = 1— @.

When the common variance is unknown, let & denote the pooled sample variance. Then,
by considering the conditional coverage probability given the sample variance & and by
taking Y=,/nX,/ o, ;= /1 /o in Corollary 1, the following 100(1—«)% confidence

statement can be made:

PCSZ t §%, @ tx+,/2 hu(v/n (Racen) ~Faco) / /2 3] B (x) dd(x)
(3.1)
where h,(w) is given by

fol@(hu(w)—wu)+ @ (-h(w)—wu)] dQ(u)= a (32)
for w=tas2(v) and 0 for 0=w=ta,2(v). Here t., ,2{»)is the upper a /2 quantile of t-dis-
tribution with v= k(n-1) degrees of freedom and Q, is the cdf of 6/ a.

As noted in Section 2, the function hy in (3.2) was tabulated in Kim(1986). Thus after
finding the values of h, from the tables in Kim, the lower confidence bound in (3.1) can
be obtained from the tables in Bechhofer (1954) for the integral value.

4. Normal Variances Problem

In practice it is often of interest to select the populations with small variances. This
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section treats the problem of selecting the populations with t smallest variances out of k
independent normal populations.

Assuming equal sample sizes for each population, let S? denote the sample variance so
that (n—1)S?%/¢%(==1,--- k) has a chi-square distribution with (n-1) degrees of fredom.
In this case, the PCS in (1.1) for the natural rule, which selects the populations associated
with t smallest sample variances, is given by

t ko
PCS= {5 };Il Gy /%) d[1- ;_I:[t+1 Gy /%) (41)

where G = Gy, is the cdf of chi-square distribution with n-1 degrees of freedom and
G=1-G.In (4.1), of;1=---=<0fx) denote the ordered variances &%--- 0%,

Methods similar to those in Section 2 yield that the 100(1—«)% lower confidence bound
on the PCS in (4.1) is given by

Pi= {7 Gt[yd,(Shew / Sho) JA[1-G*(y)] (4.2)

where S% <-.--=< S%, are the ordered sample variances. The function d,(w) in (4.2) is
defined by

F.(d(w)/w)+ F(wd,(w))™)= a (43)

for w =2 F.,2(vy) and 1 for 0 < w < F.,y(vv). Here F (y) is the cdf of F-distribution
with »= n-1 and v= n-1 degrees of freedom, and F,,,(vv) is the upper a« /2 quantile
of F,(y).

The vaues of the function d,(w) defined by (4.3) are given in Table 1 for a= (.05,
0.10, and for selected values of v and w = F.,,(vy). It can be easily observed from
(4.3) that

lim d(w) / w= Fi..(vy) and
Fias2(vy) < ddw) / W<F 1(vp) for w > F.,o(vp),

This fact was utilized in computing values of d.(w). For selected cases, the shapes of
d,(w) are given Figure 1.
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Figure 1. The ralues of dv(w) for a= 0.10
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Table 1. The values of d.{w) vs c= w / F.,,(vy) for a= 0.10, 0.15
a= (10 a= (05
c 10 15 20 25 30 10 15 20 25 30
1.05 1222 1198 1182 1.172 1163 | 1.206 1183 1168 1159 1.151
1.10 1328 1292 1269 1253 1242 | 1305 1271 1250 1236 1.225
1.15 1417 1370 1342 1323 1308 | 1.388 1.345 1319 1302 1.289
1.20 1497 1442 1409 1387 1370 | 1464 1413 1384 1363 1349
1.25 1572 1510 1473 1448 1430 | 1.535 1478 1445 1423 1407
1.30 1644 1575 1535 1508 1488 | 1.604 1541 1505 1481 1.464
1.35 1713 1639 159 1567 1546 | 1.671 1603 1564 1539 1.521
1.40 1782 1702 1656 1626 1604 | 1.737 1664 1623 159 1577
1.45 1849 1764 1716 1684 1.661 | 1.802 1725 1682 1654 1634
1.50 1915 1826 1775 1742 1719 | 1.866 1785 1740 1711 1.690
1.60 2047 1949 1894 1859 1.833 | 1993 1.905 1.856 1825 1.803
1.70 2177 2071 2031 1975 1948 | 2119 2024 1972 1939 1915
1.80 2306 2193 2131 1.091 2063 | 2.245 2143 2.088 2053 2028
1.90 2435 2315 2250 2207 2177 | 2370 2262 2204 2167 2241
2.00 2564 2437 2368 2324 2292 | 2495 2382 2320 2281 2253
2.10 2692 2559 2487 2440 2406 | 2620 2501 2436 2395 2.366
2.20 2821 2681 2605 2556 2551 | 2745 2620 2552 2509 2479
2.30 2949 2803 2723 2672 2636 | 2870 2739 2669 2623 2591
2.40 3.077 2925 2842 2788 2750 | 2995 2858 2785 2737 2704
2.50 3206  3.047 2960 2905 23865 | 3120 2977 2901 2851 2816

After finding the values of d.(w), we need the integral value in (4.2) to obtain the

lower confidence bound Py.. Table 2 at the end of this article provides the values of

Pu(d)= {7 Gt(dy)d[1-G**(y)]

(4.4)

for selected values of v and d > 1, and for k = 3,5. Some other cases have been com-

puted, but are not reported here. Integral in (4.4) reduces to that in Gupta and Sobel
(1962) when't = 1.
The values of d,(w) in Table 1 were found numerically by finding a root of (4.3) via

the bisection method with the accuracy up to 107, The values of the cdf of F-distribution

were obtained by IMSL’s subroutine MDFD, For constructing Table 2, evaluation of the

integral in (4.4) was done by using IMSL subroutine MDCH and 32 points Gauss-Lagu-

erre quardrature in the IBM Scientific Subroutine Package.
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Finally, it should be remarked that the result in this section holds for scale parameters
£amilies under the assumption of MLR property of the pdf ¢7 f(y /6:) in'y and 4:(i =
1,-k).
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Table 2. The values of P.(d) for k = 3,5
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k=3 t=1 k=3 t=2

10 15 20 25 30 10 15 20 25 30
11 391 406 418 429 439 397 411 424 424 444
12 446 475 499 520 539 456 485 509 530 549
1.3 498 .539 574 .604 .630 512 553 .586 616 641
1.4 .546 .598 641 677 .708 562 614 .655 690 720
15 .590 651 639 739 773 .608 667 714 752 784
16 630 .698 750 791 825 650 714 764 803 835
1.7 .667 739 793 834 866 687 755 806 844 874
18 .700 775 .829 863 898 720 .790 841 877 905
1.9 729 806 859 .896 923 .749 821 869 904 929
20 756 .833 .884 918 942 775 846 893 924 946
2.1 .780 856 904 .936 957 799 868 912 941 .960
2.2 802 876 921 949 967 819 887 923 953 970
2.3 821 893 925 .960 975 837 903 941 963 977
24 838 908 947 969 981 954 917 951 971 983
2.5 853 921 956 975 .986 .868 928 960 977 987
2.6 867 931 .964 981 .989 881 938 967 .982 .990
2.7 880 940 970 985 992 892 946 973 .986 993
2.8 891 948 975 988 994 .903 933 977 .989 994
2.9 901 955 979 990 995 912 960 981 991 .996
3.0 910 961 983 992 996 920 963 .984 .993 997
31 918 .966 .986 994 997 927 .969 .987 994 997
3.2 925 970 .988 995 .998 934 973 .989 995 998
3.3 931 974 990 996 998 939 977 991 996 .999
34 937 977 992 997 999 945 .980 992 997 999
3.5 943 .980 993 997 999 949 982 .993 .998 999
3.6 947 .982 994 .998 999 .954 .984 994 .998 999
3.7 952 .985 995 998 999 958 986 995 .998 999
3.8 .956 .986 996 .999 999 961 .988 995 999 999
3.9 959 .988 .996 999 999 .964 989 997 999 999
4.0 .962 989 997 999 999 967 .990 997 999 .999
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Table 2. (continued)
k=5 t=1 k=5 t=2
c 10 15 20 25 30 10 15 20 25 30
11 .246 259 271 .281 .290 137 .148 157 .163 172
1.2 .294 321 .345 .366 .386 173 202 224 244 252
1.3 341 383 420 452 482 223 263 .298 330 .360
1.4 388 444 492 534 572 270 325 374 418 460
1.5 433 502 .560 .609 .653 316 387 449 .504 .554
1.6 476 556 622 676 722 .362 447 520 583 .638
1.7 517 .606 677 734 781 407 .505 586 634 711
1.8 .556 652 726 784 .829 451 .559 .646 716 772
19 592 .694 769 825 .867 492 .609 699 768 822
2.0 625 731 806 8359 898 531 654 .745 812 862
2.1 656 .764 837 887 922 .568 .695 785 .849 894
22 .685 793 .863 910 940 .603 731 819 .878 918
2.3 711 819 .886 928 954 .634 764 848 903 938
24 935 841 .905 942 965 .664 793 873 922 952
25 757 861 920 954 974 691 818 .893 938 964
2.6 J77 878 933 .963 980 716 840 911 950 972
2.7 796 894 944 971 985 739 860 925 960 979
2.8 813 907 953 977 988 .760 877 937 968 984
29 .828 918 961 981 991 780 892 947 974 .987
3.0 842 928 967 985 993 797 905 956 979 990
3.1 855 937 973 988 995 814 916 963 983 .993
3.2 .867 945 977 990 996 828 926 .968 987 2994
3.3 877 951 981 992 997 .842 935 974 989 995
34 .887 957 984 994 998 854 943 978 991 997
3.5 .896 .962 986 995 .998 .866 949 981 993 997
3.6 904 967 .988 996 999 876 955 984 .994 993
3.7 911 .970 990 997 999 886 960 986 995 993
3.8 918 974 992 997 999 894 963 988 .996 999
3.9 924 977 993 998 999 902 968 990 997 999
4.0 .930 979 994 998 999 909 972 992 997 .999
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Table 2. (continued)
k=5 t=3 k=5 t=14

10 15 20 25 30 10 15 20 25 30
1.1 140 151 160 .168 176 257 270 232 292 301
1.2 185 .209 .230 .250 .268 315 342 .366 .388 407
1.3 232 272 .307 .329 370 372 414 450 481 510
1.4 281 337 .386 430 471 426 481 .528 .568 .604
15 330 401 462 517 565 578 544 .598 .645 .685
1.6 379 468 .585 597 950 526 601 661 g1 808
1.7 426 522 .601 667 722 570 652 716 767 .808
1.8 470 576 .660 728 .782 610 697 763 813 852
1.9 513 626 712 779 .830 .647 737 .801 .850 .886
2.0 552 671 758 822 .869 .681 772 836 .881 913
2.1 .589 711 796 857 .899 711 802 .864 .905 934
2.2 623 746 829 .885 923 738 .829 887 925 950
2.3 .655 778 857 908 941 963 851 906 940 .962
24 .684 805 .880 927 955 985 871 922 952 971
2.5 711 830 900 941 .966 805 .888 935 .962 978
2.6 735 851 916 953 974 823 .903 946 970 .983
2.7 757 .869 .930 962 .980 .839 915 955 976 .987
2.8 T77 .886 941 .970 985 .853 926 .962 981 990
29 .796 900 951 976 .988 .866 936 969 985 992
3.0 813 912 959 981 991 878 944 974 .988 994
3.1 .829 923 965 984 993 .898 957 981 992 997
3.2 842 932 971 987 995 .898 951 973 990 .996
3.3 .855 940 975 .990 .996 907 962 984 994 997
34 866 947 979 .992 .997 914 967 .987 995 .998
3.5 877 953 .982 993 997 921 971 .989 .996 998
3.6 .886 829 985 995 .998 928 974 991 .994 999
3.7 895 963 987 996 998 934 977 992 997 999
3.8 903 968 .989 996 999 939 .980 993 998 999
3.9 911 971 991 997 999 .944 .982 994 .998 999
4.0 917 974 992 .998 .999 948 .984 995 998 999




