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Response of a Prototype Brain Material Su-bjected to
Rotational Acceleration
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ABSTRACT

With thie objective of studying the response of brain tissue in a transient rotational acceler-
ation of the head, as occurs in car crash, the problem of a cylindrical case containing a pro-
totype brain material of silicone gel and subjected to a rotational acceleration around the axis
of the cylinder is analysed. The prototype material is considered to be homogeneous and iso-
tropic, and is modeled alternatively as a linear elastic or a linear viscoelastic solid.

The computational model for the present problem consists of a 3-dimensional isoparametric
finite element model, wherein large deformations and large strains are treated through the
updated Lagrangian approach. A comparison of the results of the present 3-dimensional com-
putations, with the attendant assumptions on material data, is made with the results of inde-
pendent experimental study. The deformation profiles and the major characteristics of response
of the brain material are in good agreement with the test results, Moreover, the study suggests
the possibility that the use of more accurate material data may yield very useful results even
appropriate for accurate quantification of deformations.

1. Introduction A number of experimental, analytical, and

When mechanical loads are applied to the
head, the deformation, strains or stress within
the brain can exceed the tolerance limit,
resulting in a head injury. Therefore, it is
necessary to better understand the biome-
chanical aspects of head injury under certain
specific kinematic conditions and loading.

numerical studies have been carried out on the
subject of brain damage under a transient
dynamic loading of the head.

Stritch pointed out that the high shear
strain may damage tissues in the cortical and
subcortical regions of the brain tissue; the
translational component of the impact was
considered to be non-injurious [1]. Experi-
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ments have been conducted by Ommaya (2]
in 3 sub-human primate species, and he was
able to confirm that the rotational excitation
of a short duration may produce cerebral

concussion. Engine and Wang [3] studied

analytically the steady state response of a solid
sphere of an elastic material, under a radial
harmonic excitation, and discussed the concept
of a complex dynamic shear modulus. Wang
[4] studied analytically the response of brain
which is modeled as a linear isotropic visco-
elastic solid constrained by a rigid skull. Other
examples of works based upon viscoelastic
constitutive model include Lung [5] and
Misra [8]. Merchant and Crispino [6] modeled
the head as a fluid-filled spherical shell, or
alternatively as a prolate ellipsoid of revolu-
tion. '

Recently Thibault and his associates at
the University of Pennsyivania {9, 10] carried
out an experiment to find the transient res-
ponse in the brain-skull system subjected to
translational or rotational acceleration. A
cylinder that contains the silicone gel for the
surrogate brain tissue was used to ‘model the
brain-skull system in the test. The test captures
well the high shear strains, which are known
to be critical to brain injury near the skull-
tissue boundary under rotational acceleration
transient[1]. It is, however, extremely dif-
ficult to quantify the deformation field ac-
curately from such a test.

The current state of the science of com-
putational mechanics renders numerical siraula-
tion of a head injury to be an alternative to
an experiment. The purpose of the present
work is to perform numerical simulation of
the test conducted at the University of Pen-
nsylvania; this will make possible comparison
of the deformation profile between the test

and the numerical simulation, and from this
the possibility is examined that the numerical
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simulation may provide a proper quantification
of the deformation field so that it can sub-
stitute for the expensive test. For this a three
dimensional finite element model, wherein
a linear elastic or a linear viscoelastic material
is assumed for the surrogate brain tissue, is
employed to analyse the transient response
of the brain material under rotational ac-
celeration, The computational model comprises
8-node isoparametric elements, and large
deformations including finite strain cases are
treated through the update Lagrangian ap-
proach. The data computed at node points
in the finite element grids are interpolated or
extrapolated through a smooth function inter-
polation technique onto a grid that was used
in the test by Thibaulz and his associates.

A comparison of the results of the present
3-dimensional computations, with the atten-
dant assurnptions on material data, is made
with the test results by Thibault and his asso-
ciates [9, 10]. These comparisons of the
deformation profiles are quite encouraging.
The phenomenon of large shear strains near

the periphery of the cylindrical case, in the
prototype material, under intense rotational
acceleration is captured well in the compu-
tations. The core region experiencing  rigid
body motion is also predicted well in the simu-
lation, and the time lag between the displace-
ment of the silicone gel and the input dis-
placement is in good agreement with the test
result.

2. Statement of the problem

At the instant of car crash, a driver's
head experiences a rotational transient motion
about the neck and is subjected to a severe
rotational acceleration, which results in the
damage to the brain tissue near the cortical
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and subcortical region due to high shear de-
formation. For better understanding of the
biomechanical aspects of the head injury
under such circumstances, Thibault and his
associates [9, 10] at the University of Pennsy-
vania devised an experimental apparatus, as
shown in Fig. 1, to simulate such a loading and
kinematic condition. They employed a cylin-
drical steel case containing silicone gel to simu-
late the skull-brain system (see Fig. 2). This
container was subjected to the intense rota-
tional transient that the driver’s head would
experience in car crash, as shown in Fig. 1
wherein the distance between the center of
“ mass (CM) and the center of rotation (CR)
is adjustable. Because of the dominant effect
of the rotational acceleration upon the brain
damage, the case of purely rotational acceler-

ation (CM=CR) was under intensive study.
* Uniform square grids were made on the sili-
cone gel before experiment, and a high speed
camera was used to capture the deformed grid
profiles during acceleration transient. The
load curve measured under the purely rotation-
al acceleration is shown in Fig. 4 in terms of

Experimental apparatus used by Thibault

{10].

Fig. 1

acceleration and displacement. The maximum
displaced angle is about 65 degree as shown
in Fig. 1.

For numerical simulation of this experi-
ment, we perform three - dimensional finite
element analysis for the cylindrical brain-
skull model, as shown in Fig. 2, wherein Su
and S, denote surface segments where dis-
placement and traction boundary conditions
are prescribed, respectively. The top of the
container is traction free while the lateral
and bottom surfaces undergo prescribed dis-
placements due to rotational acceleration.
It means that no slip occurs between the
prototype brain material and the case except
at the top portion of the brain-skull model.

3. Basic Equations and Solution
Procedures

3.1.  Constitutive Equations

Several authors, such as Merchant and
Crispino [6], and Akkas [7], employed a
fluid-filled container model for skull-brain
system. According to the experiment conduct-
ed by Thibault and has associates [9, 10],
however, it is more appropriate to assume the
brain tissue to be an elastic solid rather than
a fluid; for the surrogate brain tissue almost
recovers its initial configuration long after the
transient loading. To be precise, most biological
materials will display viscoelastic properties
which include nonlinearity due to time de-
pendence. In addition to an elastic model
therefore a linear viscoelastic constitutive
model is employed, which is now to be dis-
cussed. '

For small linear viscoelastic deformations,
the constitutive equation may be written

" as de'

g‘=2f:)R(t——r)a~? dr and trg=3ktre
(1.a,b)



which represent the viscoelastic behavior of
the deviatoric part and the purely elastic
behavior of the volumetric part; here ¢, e
are the deviatoric parts of the Cauchy stresses
and the infinitesimal strains, and R(t), k are
the shear relaxation function and bulk modu-
lus, respectively. For extension of this con-
stitutive model to finite strain deformations,
we introduce the rotated Cauchy stress o and
the rotated rate of deformation E,

§=RT-gB
where R is the rotation tensor in the polar
decomposition of the deformation gradient
and D is the rate of deformation tensor. For
generalization of equation(l.a) to the case
of large deformation, noting that ¢ and jQ
are both referred to the undeformed configura-
tion, we may consider, '

t
7 =2/ R(-nDdr,
(o]

trg=3ktrD (2.a,b)
Such a generalization of the contitutive equa-
tions from infinitesimal deformations to
large deformations is not unique; we may
generalize equations (1.a,b) using the 2-nd
Piola Kirchhoff stress and the Green strain
rate, which leads to an apparent difficulty,
however, in decomposing the deformation
increments into the deviatoric part and the
volumetric part for finite strain deformation.
The constitutive model (2.a,b) enables us to
avoid such a difficulty when deformations
become large. In the present study, we use the
following function for the relaxation function,
R(t) = Gy + (G, — Gy) € (3)
where G; and G, are the initial and the final
shear modulus, respectively, or alternatively

BB =TS E/ Vol 11, No. 5 1989/79

they will be called the short time and the long
time shear modulus. The mechanical analogy
of this viscoelastic model is shown schematical-
ly in Fig.5. The relationship between this me-
chanical model and the relaxation model (1)

is given as

G =K, G

Differentiating Eq.(1.a) or from the mechanical
model, Fig. 5, we can obtain the following
differential form

= K1 + K, a = KI/C (4)

()

From this equatwn, it follows that the com-
plex shear modulus-like-parameter (_'}, which
corresponds to &'i;/(2yij) , in terms of sinusoidal
input frequency cw is given as

2 2
a“Gy+w G, (G~G,)ow
[+ + w2 a” + w2

We also employ the linear elastic consti-
tutive equation of isotropic materials in terms
of the rotated stress and the rate of deforma-
tions,

'

gk
e |

=2GD and trg=3ktrD (7.ab)

where G is the shear modulus. Note that this
equation is reduced to Hooke’s law for in-
finitesimal deformations, and that it is ob-
tained as a limiting case of equation (2.a,b)
by taking G,=G,.

The aforementioned models may not
thoroughly describe the characteristics of the
teal brain material, but serve as simple models,
which are taken to be enough for the present
primitive skull-brain model. Moreover, equation
(7.a,b) does not represent the strict hyper-
elastic behavior for large deformations, as
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pointed out by Simo and Pister[13]; however,
it does not show any unacceptable response
at the strain level less than 100%.

3.2. Finite Element Formulation

We use the updated Lagrangian displace-
ment F.EM. to obtain the transient response
of the aforementioned skull-brain system.
The governing equations and the boundary
conditions for F.E.M. formulation are summar-
ized as

linear momentum balance in the absense

of a body force:
aT. .

1] = px] (8)
5){ .

1

angular momentum balance:
Fi;Tix = FigTyy (9)

traction boundary conditions:

Tijn: =1 on Sy (10)

brain
material

radius 3.97cm

height 7.02cm
case
St
Sy brain S,
material
Sy
Fig. 2 Brain—skull model.
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displacement boundary conditions:

uj - u; on Sy (11)
where
Fi : defomation gradient
T4 : nomina] stress tensor
u; : displacement
t; . traction

S4 : part of the body boundary on which

tj is prescribed

Sy ¢ part of the body boundary on which

u; is prescribed

Here the angular momentum balance (9) is
nothing but the symmetry requirement for the
Cauchy stress, and it is satisfied identically
when the constitutive equation is prescribed
in terms of the rotated or the Cauchy stress
as given in equations (2.a,b) and (7.a,5). Sup-
pose successive cor_iﬁgurations corresponding
to time t = tg, ty,ta,...tN ... . tf, and we
denote this sequence of configurations by
Ql, Q2 03, ... QN N1 . Qf Inthe
updated Lagrangian formulation, the most
recent configuration among those which we
have obtained is taken for the reference con-
figuration to solve for the subsequent configur-
ation under the corresponding external load
increment.

As a start toward the formulation, suppose
we have obtained all the configurations up to
QN To obtain the solution for the next con-
figuration 2N*1, we write the weak form of the
linear momentum balance and the traction
boundary condition for Q¥*1 with QN being
taken as the reference configuration.

OAT, .

ary.
IQN Wy —N-Laxz dav + fQN wj‘&—ax: | dv —
J

—E’f*l)ds =0 (12)

N+1 — N
w px, TdV + f w (T, 0+ AT..n.
ol i) Stjj iy&i iji
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Here w; and wj are the weight functions and
we have taken
wj=- t:)j on Stj’ and Wy = 0on Suj,

and we have used

N+l TN + ATy

i (13)

Integrating equation (12) by parts and applying
the divergence- theorem with the aid of equa-
tion(13), we teach the following form,

AT aul
r - N+1
ij dv =
Jon f
N 6w

fN‘J

dV +J N pxlj"'l w.dV

(14)

Expressing the nominal stress increment AT in
terms of the increment of the 2-nd Piola-
Kirchhoff stress AS;; and the displacement
increment Au;, we rewrite the above as

('?AuJ 5wJ
' 6 Bx
m
N 6[‘) .

N+1 ™, ]
t w.dS— ij~——dV+
f J fQN Bin\I

Stj

f oN ps'JJ?H 1wjd\f (15)

Note that the nominal stress and the 2-nd
Piola-Kirchhoff stress appearing abave are
all referred to the configuration N, not to
the undeformed configuration. The two terms
on the left hand side of equation (15) 'yield
the stiffness due to the incremental stress and
the initial stress, respectively; on the other
hand, the three terms on the right hand side
give the external load, the internal force and
the inertia force, respectively. Noting that the
constitutive equation (2.a) is given in tetms of

the rotated Cauchy stress, we rewrite the first
term on the left hand side in terms of the
Green-Nagdhi increment

o dAu i
- R_ _
as; = Aol [( N~ ARy Ry )
m
dAu j
(SR ARy Ry) + o Ackk}
X
m .
(16)
where
G dAu ;
R 1
ij = leAam.n Rjn ’ Af = o P
0Auj )
+ 3 N ) = D'let (17.a,b)
X

1

A proper manipulation of equation (2.a,b)
gives the following form of an approximate
incremental relation.

GR._ )
Doy = Cje B (18)

where Cyq is the incremental viscoelastic
stiffness, given in Appendix. This is now used
to represent Aa%Rin the displacement incre-
ment Auy; through (17.b). For accurate com-
putation of stiffness, all the remaining terms
inside the bracket of equation (16)'need 1o
be considered. This, however, would entail
very complex algebra and would involve a great
deal of numerical computation. For stiffness
computation, we therefore neglect all terms
other than the first term in equation (16)'
and the second term on the right hand side of
equation (15), Fast convergence of the Newton
type scheme is sacrificed due to this; but
this will not affect the accuracy of the solution
whenever iteration reaches convergence, as
long as the constitutive equation (2.ab) is
properly implemented in the stress update



procedure so that the unbalanced force on the
right hand side of equation (15).can be ac-
curately calculated. Numerically the use of an
approximate stiffness, with some terms neg-
lected, is equivalent to using the modified
Newton’s method in solving nonlinear equa-
tions.

For symmetric stiffness we take w; =
3 Auv; in equations (15) and (16), and taking
the straightforward F.E. formulation after
introducing an appropriate shape function,
we finally obtain the following incremental
equation,

N N+l N+1
KyyAdy=F; ‘FIII*MIJ% (19)

where P{N+1 =' PN + AP, is the external load
at t=tN*! F{N . the internal force vector,
KNy and Mp are the tangent stiffness and
mass matrix, and ¢y 1=¢;N+A¢; is the nodal
degree of freedom. For simplicity we use the
lumped mass matrix, which remains constant
throughout analysis, and therefore does not
need updating every time step. For accurate
calculation of the stress divergence or the
internal force term F(N, the constitutive
equation (2.a,b)' should be properly imple-
mented in the stress update procedure. We here
use the scheme proposed by Key [12]. For
time integration, we use the Newmark method,
which becomes an unconditionally stable
implicit scheme with a proper choice of the
Newmark constants. Application of the New-
mark scheme to equation (19) leads to the
following form suitable for iteration (see the
reference [14] for details),

k(D) g (V) _p

H

N+ (VD) (20)

where

1
- (Nji-1) ~
kY =k 5= My (21.8)

N,i-1)
31 +BAt

I

e e e

1
- (N1} (N
Ta 2 Mule T ey )
1 AN
Ay MIJOJ (W“I)MIJ¢J(N)
(21.b)
Ny _ ! (Ni) _ L (N)
3 Y oy - o)
N
I (X)
~Fat (ap-bey (21.¢)

8,0 = 6N 1 A1) (M)

+ YAt ¢J(N’i) (21.d)

where f,y are the Newmark constants. Here
the superscript (N, i) indicates the i-th iteration
at the time step N, and the incremental degree
of freedom Agy™D is related to ¢y as

¢J(Nvi) = ¢J(N,i—~1) + A¢J(N’i)

i

=¢J(N)+ 3 A¢J(N7k) (22)

where ;M- converges to ¢y ™+1) as i increases
sufficiently. Note that the velocity and the
acceleration are given by equations (21.¢)
and (21.d), respectively, once the incremental
displacement A¢y™D is obtained from equa-
tion (20), and subsequently ¢;N? from equa-
tion (22).'

4. Numerical Results and Discussion

The three dimensional finite element
modelling of the eight node isoparametric
elements is used for the present analysis (so
that it can be used for analysis of nonaxisym-

metric motion later), The mesh configuration
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Fig. T Frequency characteristics of the viscoelastic
modes.

is shown in Fig. 3, and the other configurations
in Fig. 8 are introduced to examine the sensi-
tivity of solution to the mesh configuration.
The physical dimension and the density of the



Fig. 8 Maesh configurations

silicone gel are given as
height : 7.02 cm
radius : 397 em
density: 0,95 gm/cm?

The elastic and viscoelastic properties of the
silicone gel are not easy to determine accuyrate-
ly; according to the test results [10] there are
some variations even in Young's modulus.
The following four material models are used
for numerical simulation:

Shear modulus G:
2.69 x 10°Pa

Poisson’s ratio v :
0.49

model 2 (viscoelastic) G, : 2.69 x 10* Pa

G,: 7.54x.10% Pa
k :1.25x10° Pa

model 1 (elastic) -

o : 601/sec
model 3 (elastic) G :4.84x10*Pa
' v 049

model 4 (viscoelastic) G, : 4.84 x 10% Pa
G,:7.54x10° Pa
k :2.25x 105 Pa
a :201/sec

Poisson’s ratio »=0.49, close to 0.5, implies
that the material is almost incompressible.
The long time shear modulus G, is determined
from the relation G, = E/(2 + 2v)-and. from
Young’s modulus of the reference [10] (E=
2246 x 10* Pa, C1, B200), which was ob-
tained from the static test. There are, however,
no available data for Gy, k and «, and these
are therefore comjectured. It is noticed that
the shear modulus G of model 1 is equal to
the short time shear modulus Gy of model 2,
and that the shear modulus of model 3 to
the short time modulus of model 4. The re-
laxation functions and the frequency character-

istics are shown in Fig.6 and in Fig.7. Fig.7
shows that the shear modulus change on the
frequency domain is negligible when the
frequency is higher than 150 rad/sec.

The time dependent displacement bound-
ary conditions, appearing in Fig.4, are imposed
on the displacement boundary 5, of Fig.2
The Newmark constants are taken as =045,
and v=0.75, which assure the unconditional
stability. For the time step size, we use At =



2.5x10"4 sec. The effect of time step size is
found to be negligiblé when At is smaller than
5%10%sec.

In the beginning, we use the mesh con-
figuration M1, which has very coarse mesh in
the central region (Fig.8).' The use of this
mesh, might be justified because it is expected
that shear distortion will be very small in the
central region and therefore only little error
will occur. However, the results show that the
coarse mesh in the central region gives rise
to a spurious response as time exceeds 16 m
sec. This has been rectified gradually as the
region of coarse mesh shrinks in the center
along with the mesh configurations M2, M4,
M5, and M3. The three mesh configurations
M4, M5, M3 turns out to give virtually the
same results.

The output nodal displacements are
“interpolated to give the deformed configuration

of the square grid used in the experiment,
so- that a comparison may be made of the
deformed configurations between the numerical
simulation and the test. Because of the limit-
ation of space available, the results only for
the material models 1 and 2, which turn out to
produce better results than the models 3
and 4 are shown in Fig.9 and 10, where the
~ deformed- shapes from the test are shown on
the top. The shear strain component A’B of
the Almansi strain tensor [11] is also plotted
below the deformed shape. The numerical
results for deformation profiles are seen to be
very similar to the test rtesults obtained by
Thibault [10]. The numerical results agree
with the experimental results in that the
displacement of the brain material lags behind
the input rotational displacement during the
acceleration phase. Under the deceleration,
the inner region of the brain model continues
to rotate, overshooting the outer input dis-
placement up to the time of 10 m sec. There

is found the undeformed core exhibiting rigid
body motion as in the experiment. The large
shear strain near the periphery of the cylindri-
cal case is also captured well in the numerical
simulation.

From Fig.9 and 10, there are not found any
significant differences between the responses
of the two models - the elastic model (model 1)
and the viscoelastic model (model 2). This
Fig.4 shows
that the acceleration versus time curve may

can be explained as follows:

be approximated by a sine curve of approxim-
mate period 16 m sec, and this suggests that
the dominant exitation frequency is appro-
ximately w=27/(16x103)=392.7 rad/sec, for
which Fig.7 gives the shear modulus very close
to the short time modulus G,. That is, the
response of the brain material is dominantly
governed by the short time modulus, which
has been used in the elastic modelling, The
duration of acceleration transient is very short
enough to suppress the memory effect in the
response of the silicone gel. This suggests that
the short time modulus G, is one of the input
data of critical importance for accurate pre-
diction in the present numerical simulation.
The present numerical results may not be
appropriate for accurate quantification of
deformation. Taking into consideration the
fact that the viscoelastic properties used in the
analysis, except for the long time modulus,
are determined not from test but from con-
jecture, however, the results may be con-
sidered very encouraging in that the overall
deformed configuration and the characteristics
of response of the brain material which are
observed in the experiment are captured well.
Some simple test may be combined with
numerical simulation to determine the accurate
viscoelastic constants, and use of these may
bring a substantial improvement in accuracy.
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5. Conclusion

With the aid of nonlinear finite element
analysis, numerical simulation for the response
of a prototype brain material, silicone gel,
under rotational transient acceleration has
been performed, and a comparison has been
made between the results of this simulation
and the test results. The deformation pro-
files and the major characteristics of response
of the brain material are in good agreement
with the test results. The results of numerical
analysis suggest the possibility that the use of
more accurate material data, particularly the
short time modulus, which may be determined
from test for some simple motion in conjunc-
tion with numerical simulation, may yield very
useful results appropriate for accurate quanti-
fication of defdrmation, s0 that the numerical
simulation may replace the expensive tests.
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Appendix

Equations (2.2) and (3) read for t=tN*!

g

. N+1

N+L zj;t G, D'dr + 2(G,~G,)
N+1

ft e—a(t
(¢]

Introducing the relation (17.b), we may recast
the above into the following approximate
form involving ¢’ and A¢'

N+1

=) D'(ndr (A-1)

Ad) [ 2A, k~1A, k- 3A,0,0,0 W [

Aok k+ 3A,k-$4,0,0,0 seyy

Acfgg = k+_%A, 0,0,0 4e33

Aa'ig Symmetric %A, 0,0 2beyp

Aagg %A, 0 28893

Aa§; t ' %A Zoeys J
)
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gL = oM 4 2{Gy (G =G,y (1—¢72Y)
(aAL)}AE + 2(G—Gy)(e *P )
nge_a(tN_T)D_'dT (A—2)

Neglecting the 2-nd term and rotating this
relation back to the current configuration,
we obtain the incremental stress-strain relation
in terms of AE'GR and Ae'

AgSR 2 9(6, - (6,0, 1-e Y

(aht)} Ag (A=3)

This relation is combined with the incremetal
form for the volumetric deformation, equa-
tion (2.b), to yield the complete incremental
relation. In the “collapsed representation”,
this can be written as

where A = 2G, + 2(G,~G,) (1—""3%)/(aAt)



