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Abstract—Molecular dynamics of rod-like macromolecules in dilute solution is considered by using a new
systematic closure approximation. It gives the proper limits for both random alignment and strong uniaxial align-
ment. The new closure approximation is applied to a uniaxial extensional flow, and the result is in an excellent
agreement with the known exact solution. It is also applied to simple shear flow and shows proper behavior for
weak flow strength, but not satisfactory results for strong flow field.
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INTRODUCTION

Molecular dynamics of rodlike macromolecules
in dilute solutions has been considered by a lot of
authors including Bird ef a!l. [1] and Dei et al. [2] who
published excellent books separately. The significance
ol such system lies in the fact that it can serve as a
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theoretical basis not only for rigid polymers such as
biopolymers but also for the short fiber composites
[3], concentrated polymer solutions of rigid polymers,
and even polymeric liquid crystal systems [4,5] with
some minor modifications. In general, there are two
ways to handle the dynamics of rigid rod molecule
immersed in a viscous medium. One of them is to



abuien function of such

it i o compoeaied task, and itis often

TTTIATARS s obun sach functions i detail o even
B pessibic, i reguires significant numerical eltorts
The ather w10 solhve this problem can be ac-
comipiishod by obtuining the well -defined ortentation
tensos describing the average orientation of such
rodds. In this vy it s otten possible to obtain the
evact solution and saves compating tme and can
serve a- a starting peint for the further numerical
works. b domg so. we oiten encounter the fourth
order orienlation tensor, which ts necessary to be ap-
srovinnited with combinaiions of lower order orien-
tation 1ensors (o make the system soluble. It is called
the “closure approximation’, There are several
restiictions imposed tor the proper closure approx-
imation, which will be explained later. As shown in
Table !. several approximations have been
developed, but they are abways valid for a restricted
region. For example, the random alignment closure
{R) and the linear closure (L} are valid near the ran-
dom alignment, and decoupling closure (D) is good
for only strong alignment. Linear ¢combinations of
these two (LND) was tried to give not satisfactory
results {3]. Hinch and Leal [4] iried two kinds of linear
combinations of the weak and strong flow limits for
the <uu, ug>e,, which gave us somewhat im-
proved results but it is very complicated to use. Here
a newly designed closure approximation (NEW) is
construcied through a systematic way to give a good
resuli for the extensional flow throughout the region
of flow field strength.

In sec.?, the general theory describing the
dynamics of rigid rod molecules with arbitrary aspect
ratio {r,) in the viscous medium is reconsidered
bricfly. Ip sec.3, a new closure approximation is con-
structed and applied for the extensional flow and
shear flow separately in sec.4 1o demonstrate the
validity of such a closure approximation. This ap-
praxinuuion can be readily applied to the dynamics
of vconcentrated solutions and the dynamics of
polymer Hquid crystals [5,6). This latter topic s the
subject of the next paper.

THEORY

Let u, be a unit directional vector parallel to the
rod and ¢ (u; 1) be its distribution function.
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Here we use the Cartesian summation convention
[6] where repeated subscripts imply summation. In
very dilute solution, the rotational motion of the rods
is independent of the translational motion, so that
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1t can be described by the Smoluchowski equation
foi rotational diffusion {3]:
d¢r__[. o

oY, 3 . o e
P B A S /3] ‘v..;',.{)
at ’ DA Al Ui

Here Dasthe rotational diffusion constant given
by

I,

S 2-31
s’

D=3kT
Here KT 1s the Bolizmann temperature, L and
r_are the length and the aspect ratio of the rod. 4,
is the shear viscosity of the solvent. U, is the local
rate of change of the unit directional vecror due to
the macroscopic velocity field, which can be given by

L= U, AB LU, =~ A8, U gl U,

{2-4)

here A is a form factor related to the aspect ratio
r, as followings.
ri-h

A=

: 2-5)
re+ 11
The macroscopic velocity field can be described
with the vorticity tensor w , and the rate of strain
tensor ¢, which are defined with the position vec-
tor x, and the velocity vector v,

1 av, av :
= P A ) )_ 2-ba;
W 2 ax, axz \2 6 i
av, av,, . .

== R L S E (2~
€u™ 5 ox, %, 2-6b]

Here we define the orientation tensor which is
closely related not only to the stress tensor but also
refractive index tensor.

. ) 1 -
Si,:<uiu,>w§5“ 2-73

where <B> = /‘d’u«,oB. 2-8}

Then it is easy to construct an equation for S,
by multiplying equation eq (2-2) by uu- -8 4 and
then integrating over u, domain.

S,

I

L
3
BDS,+ walut, > o p<uu, > + Aey,

LUy, >+ e, KUl > — 2 dey <u,ugugu, >
(2-9
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NEWLY DEVELOPED CLOSURE
APPROXIMATION

As shown in eq(2-9), it 18 necessary 1o approx-
Imate e, <uauu> as a combination of fower
order orientation tensors. Due to the svmmetry of
iand j,k and I, <uuu;u,> can be approximated as
follows
a2 = % <<u > <u, > A (Kuu

U, U, > <UL ) ALy
TUM> <UL, > F A8, <uu,>
LU+ A8y, U, > A, (8,
<uu,> a2 <uu, >
Te<uy >+, <un,> )t A8,
LU, > Ry8 8 py + Ay (80, F 0 )
(3-1a)

the constant A ’s.
They must satisfy the normalization condition,

It now remains to determine

<uuul, > =<uu,> (3-2

Then it can be easily seen

AFdAaT3A=1 (3-3a;
2A,+3A4,=0 3-3b)
A=0 3-3c!
Ast3AsT2A=0 i3-3d;

The next condition is that the approximation
should approach the proper limit for the extreme
cases. For random alignment, both the second mo-
ment and fourth moment should be isotropic.

Therefore,

L A A1 1 1, p .
P S el B S — A, -~

T 9+ 9,\‘_ 3,15+3,\,%A, (3~4a)
_'i_—_.l_ I é i - A
15 - 9 /‘{2 hn 3 Aﬁ i f\s [3 4b)

More conditions are needed to determine the coef-
fictents. For the extremely strong alignment, if we
can assume the unit directional vector u, should be
aligned with a fixed directional vector n. then we
have

ATZA=1 (3~5a)
A3+A1:O (S‘Bb)
At A,=0 (3-5¢)
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Equations (3-3), (3-4) and (3-5) can be solved to
give us a unique set of coefficients,

b, 3 ,__2 ., _2
A= 5 A= 5.A3— 5.)\7— 5

all other A =0 (3-6

It is nothing but Hinch-Leal approximation [7].

As another choice for the strong alignment, we
can assume that <uuuu,> A, approaches to the
exact limit. Here A, is a symmetric, 2nd order ten-
sor. There is no restriction imposed on the
tracelessness of A, so that it is possible to approx-
imate the terms related to the external electric or
magnetic field. The underlying physical implication
is that such an external field is not too strong to lock
u; to a fixed direction n,, but strong enough to give
the nearly uniaxial distribution around n, parallel to
the external vector field H,. So that the <uaruu,>
H,H, goes to a proper limit.
Then we have

MTE2A+ A 1444 20,=1
A+ A4 A,=0

{3-7a)
(3-7b)

Additionally, the normalization condition of
<uuuu > = <uy;> is used.

AF4A+3A,=1 {3-8a)
2A,+3A4,=0 (3-8h)
Ay=0 {3-8c)
A+3A+24=0 (3-8d)

Then we have a set of one parameter solution

A=1f {3-9a)

Azzll;:A‘IG (B_Qb)

A5:A1:Ag:"f\g: _éf— % 543"9(:,\'
2 _1 -

The unknown parameter f can be arbitrarily
chosen. It will be explained later.

In summary, the newly designed closure approx-
imation is given as follows.

<udl,ug,>=f<u,u,> <uu,> + (% - %)
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UL By U, > '.T)-

P80k b, BB 1

i <au > 8,4 <uu, > e,

LU, > 85 <UL U > 6, 3-1b:

Now the eq(2-9) can be converted into eq (3-10)

S, . .2
i = —6D5,, WSk, 1 WS 5 Ae,; 4

Af2f - g 1€Sht €4S h) —2AS e,

24t~ TISvewd, 3-10)

Once the orientational tensor S, is obtained, the
stress tensor due to the polymer chain can be given
as the sum of the elastic stress and viscous stress (See
€q(8-123) in the book of Doi and Edwards [2]). Here
the case of thin rod with A =1 is considered.

k
TD~:3CRT85,+ gz—gekxutufuku) (3-11a!
Then, we have
3 ckT
To= 5 ekTSu 4 s (wnSu +wnSut Le,
+e;kSU+ekah-3 (3'1}b)

APPLICATION TO STEADY FLOW
FIELDS

Extensional flow

The uniaxial extensional flow case is examined
in detail to test the new closure approximation. The
flow field is governed by the following two tensors,

wy, =0 4- 1a)

3
eu="5 8.8, 0,) (4-1b)

Here € is the rate of strain imposed.
In this case, it is natural to assume the S, has the
same axial symmetry.

1

Su:S (é‘ué‘u_ '3—6\14) ( -2)

Then eq(3-10) reduces to

101657+ 5+3¢~10f 61 S - 3fe=0 (4-3)
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where £ = € /6D, Then the analytic solution ftoi
o ERIN
. 16!]1_—_ s
Wf  afe
;Qf*;l . WB3-10f) lz - i-qa)
V 400f 40f* ¢ 161‘ ¢

To see the validity of this approximation, let us
compare it with the exact result and the approximate
result of Doi and Edwards [2] which is obtained by
using the decoupling closure approximation. The ap-
proximate result from H-L closure is also compared.

[dt W—t’——f jexp {-%ft’)

Stx.u‘r' (4-4h)
dt expté—gt"}
[}

- o1 1. /9 1 1 A
Se= T Y6 T e 6 W-dc)
X 15 5 25
Sy = — - = 2 4-4d)
g8 64 32¢ 6447

To see the difference quickly, let us examine the
limit of small & .

SE“”:SVEW:S,,,_:%E for small ¢ {4-5a)

but S,=¢ for small ¢ {4-5b}

New clousure gives the exact limit for small £ .
On the other hand for the limit of large ¢, the
decoupling closure gives the exact solution and also
we can make the new closure give the exact limit up
to order of 1/ € by choosing f =6/5. It can be com-
pared with the 8,,, which understimates S a little.
Detailed values of S as a function of £ is shown in
Fig. 1 in which one can see the difference between
three closure approximations.

SE“CT=SD:1—3—15 for large ¢ (4-6a)
Sppwz=1- Mwmm for large & (4-6b}
S, ,=1- ';{" for large ¢ (4-6¢)

Then from eq(3-11b}, the extensional viscosity is
given by

- 3#82 [T 11 3

~Tul/ € =7CkT[S+SE”*“§]

{4-7a)

W el Ay e 28 33
.7 ///-f“/;,, - R i?t‘cuup
0.6} 7 ——f=12
osp ) £.0.6

un e
i exact
0.3 /,f
0.2 r’:j
0.1}

%0 ! 2 3 5

£

Fig. 1. Orientational parameter $ as a function of § .
From the top in the region of small £ |, Decoupl-
ing closure {eq. 4-4¢), new closure (eq. 4-da) with
f=1.2exact solution {eq. 4-4b), and new closure
with f=0.6.

1 — — — decoup
0.8 oo £ 12
0.6} cerreee = 0.6
0.4t f = exact
0.2F

0 ] l ol L

-3 -2 -1 0 1 2

jog 3
Fig. 2. Extensional viscosity as a function of € . From the

top in the region near £ =0, decoupling closure,
new closure with = 1.2, exact solution, and new
closure with f=0.6.

The extensional viscosity is predicted to be cons-
tant for both small and large § .

2ckT
5D

Asg— oo, Me“3us—’%—g

{4-7b)

ASE-0, g~ 3

4-7c)

The exact extenstonal viscosity is known as

kT f <§2

~1) 3t - l)exp[%ft’]dt

e~ pte™
24D fldt exp % £t?)

(4-8)

With this exact value, three different approx-
imated cases are compared in Fig.2.
As seen in the region of small § , new approx-
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imation gives us pretty good results regardless of
value (f=0.6, 1 - 1.2). On the other hand, decoupl-
ing approximation gives Us a wrong result.

For large & . every approximation slightly
overestimate including the decoupling one. Therefore
it is hard to tell that the decoupling approximation
is truely valid near the strong alignment. The reason
is that even for the strong alignment it is always
necessary to have 4th order orientational parameter
along with the 2nd order orientational parameter S,

Every approximation described here is essential-
Iy 2nd order approximation, so that it is not enough
to describe the exact behavior in the region of large
¢ . And also it is one of the reasons why {=0.6is
chosen in the new approximation. As you see in
eq(3-1b), it is the only way 1o have proper limit of
4th moment when the rod aligns strongly along a
unidirectional vector n,. The case of f=0.6 gives us
best results over a wide range of & as shown in Fig.
2.

Simple shear flow
In this case,

e,=¥/2 (Fnd,, 8,8,
wy=7/2 (0,8, Fe2),!

{4-9a)
(4-9b)

It is natural that we have only S,;, S,,, S
(=S,)) and Sy,. All other terms are zero.

Since Sy =-(§;;+S;,), enly 3 nonlinear equa-
tions should be solved for the orientation tensor.

S. {4-10a)

Su=gii= 4§+ 201-218,08,, -10b)

g

R
S”—giS + 10>

+ <f+%‘lsn—2fs1§>
{4-1c)

where ¢ = ¥ /6D.

It is easy to eliminate S,, and S,, from these
three equations.

4

4 . 3.
~ 3

_ H
(f 10/ 1]5 S:z
(1+2f¢5,,)?

Su=g (1+2££S,,)

4-11;

Then S, and S,, can be obtained respectively

once S, is determined. Then the shear viscosity can
be given as follows.

1
2D ‘e T
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MEO Y
1-Ety

,;ngg‘ 4_12‘
In the lmit of smalt ¢ .
G i
HJeT ¢ - L2
4 2

g, = e + ﬁf} I i4-12b:
. 6 2 ;
bzz_ - éf} i Iéf 6 [4”12C!‘

Therefore the shear viscosity and first normal
stress difference coefficient are obtained as constants.

. 2ckT ‘

~ 4T 1ED (4-13a}
kT
&= gﬁb” (4-13b]

It turns out to be equal to the rigorous values i2]
as expected.

For comparison, the exact numerical shear
viscosity is plotted in Fig. 3 with the approximate
viscosity obtained in this analysis. The detailed pro-
cedure to obtain the exact numerical value is well ex-
plained in Stewart and Sorensen [7). Once the
orientation distribution function is obtained, con-
tribution of polymer chain in the shear viscosity can
be obtained by averaging over this distribution.

. 15D

(= 25) >

2ckT * 4¢

As shown in Fig. 3, our approximate result is well
representing the exact behavior until log € is 0.5.
On the other hand, the approximate result from
decoupling closure is not good at all except the nature
of shear thinning in the large ¢ region.

<u,u,>+ }4_5 <ulu;>4-14)

e
o

]
{a) (b}

{a)
{b)
o)

20kT

Sod o
o N b b O

'
—
v ™

Iog I(Nﬂ's,‘&]

1.2
1.4
-1.6l

-3

-1

(SN

0
log ¢

Fig. 3. Shear viscosity as a function of £ . Upper one
(c) is from decoupling approximation, lower one
(a) from new closure with f=0.6, and (b} from
numerical solution in the region of small £.
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CONCLUSION

Phe newly developed closure approvimanon i
applied for the dynamics of dilute solution of rigid
iracioinoleciies o show the satisfactory results for
wide range of flow strength. [t is clear that it may
be good for dynamics of polymer liquid crystals
where we have two sources of fourth order tensors.
For example, if we deal with a highly ordered
polymer liquid crystal with weak flow condition, the
newly developed closure will be a better one than the
simple decoupling cne. This is a subject of next paper
which is under consideration in our laboratory. In
the case of shear flow, the new closure is fairly good
for weak flow but not satisfactory for strong flow,
for which other closure is definitely necessary.
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