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0. Introduction

It is recently proved by Aiyama and the authors [2] that a
complete space-like complex submanifold of a complex space form
M5 (c’) (c'=0) is to totally geodesic. This is a complex version
of the Bernstein-type theorem in the Minkowski space due to
Calabi [4] and Cheng and Yau [5], which is generalized by
Nishikawa [7] in the Lorentz manifold satisfying the strong energy
condition, The purpose of this paper is to consider his result in
the complex Lorentz manifold and is to prove the following

Turorem. Let M’ be an indefinite Kaehler manifold of index 2
and let M be a complete space-like complex hypersurface of M.
If M is locally symmetric and if the horomorphic bisectional
curvature for any Space-like planes is non-negative and the
holomor phic bisectional curvature for any space-like plane and any
time-like plane is non-positive, then M is totally geodesic.

1. Indefinite complex submanifolds

This section is concerned with indefinite complex hypersurfaces
of an indefinite Kaehler manifold. Let (M’,g’) be an (n+1)-
dimensional connected indefinite Kaehler manifold of index 2(s-+¢)
(0<s<wu, t=0,1) and let M be an m-dimensional complex hyper-
surface of index 2s of M’. Then M is the indefinite Kaehler
manifold endowed with the induced metric tensor g. We choose a
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local unitary frame field {F.)={F,, E,,---,E,} on a neighborhood
of M’ in such a way that, restricted to M, E,, --- E, are tangent
to M and the other is normal to M. Here and in the sequel the
following convention on the range of indices are used throughout
this paper, unless otherwise stated:

/{, B’ e (), 1, o, A,

i,j, =], e, AL
With respect to the frame field, let {wa} = {w,, @) be its dual
frame field. Then the Kaehler metric tensor g’ of M’ is given by
g =22 40.00@,. Associated with the frame field {E,), there exist
complex-valued 1-forms w,;, which are usually connection forms
on M’, such that they satisfy the structure equations of M’:

(1- 1) dwfrf“zzﬁsw.w/\w}z: 0, WapT @Wpa =0,
dw s 4‘20500140/\0)03:‘9’/;3, Q,A[}:ZC,Dst EI)R’ZBchcA@D,

(resp. the components of the indefinite Riemannian curvature tensor
R’) of M.

Restricting these forms to the hypersurface M, we have

(1- 2) wy==0
and the induced indefinite Kaehler metric g of index 2s of M is
given by g=2%50,Qa;. Thus {E;} is a local unitary frame field
with respect to this metric and {w;} is a local dual frame field
due to {E;}, which consists of complex-valued 1-forms of type
(1,0) on M. Moreover wi, -, w,, @, -, @, are linearly independent,
and they are cannonical forms on M. It follows from (1.2) and
the Cartan lemma that the exterior derivative of (1.2) gives rise
to

(1 3) Cl)ggf—"ZJ-Ejh;j(l)j, h,‘j:h,‘;.
The quadratic form J; eseho0R0RQF, with values in the normal
bundle is called the second fundamental form of the hypersurface
M, where we put e=¢,.

From the structure equations of M’ it follows that the structure
equations for M are similarly given by

(1.4) doi+2gwaN\wi=0,  w;+&;=0,

dwij+2kekwik/\wkj29i;'; Q.‘j”:zb,zelzszRijkiwk/\G_Jz.

Moreover the following relationships are defined:

(1.5) dwoo:-Qoo, Qoozzk,zﬁkE}Rﬁokiwk/\@z,
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where Qg is called the wnormal curvature Jorm of M. For the
Riemannian curvature tensor R and R’ of M and M’ respectively,
it follows from (1.1), (1.3) and (1.4) that we have the Gauss
equation

(1.6) Riju=R;ju—chphy,
and by means of (1.1), (1.3) and (1.5) we have
(1.7) R = R's01 + 2 ik 5.

The components Rij. and Ry, of the covariant derivative of the
Riemannian curvature tensor R are defined by
P (Rzﬂaimwm + Ri’jﬂﬁa_)m) :dle - stm(ijk@mi + Rzmklwm,’

.{_ Rfjmiwmk+R7jkﬁ:wml) .
The second Bianchi formula is given by
(1. 8) Rz’jklm:R:’jmik-

A plane section P of the tangent space T.M of M at any point
x is said to be non-degenerate, provided that g.|7T.M is non-
degenerate. It is easily seen that P is non-degenerate if and only
if it has a basis {#, v} such that

& u, u)g(,v) —g(u, v)?3-0,

and a holomorphic plane spanned by # and Ju is non-degenerate if
and only if it contains some vector v with g(v,v)=F0, where J
denotes the complex structure of M. The sectional curvature of the
non-degenerate holomorphic plane P spanned by # and Ju is called
the holomorphic sectional curvature, which is denoted by H (P)=
H(u). The indefinite Kaehler manifold M is said to be of constant
holomor phic sectional curvature if its holomorphic sectional curva-
ture H(P) is constant for all P and for all points of M. Then M
is called an indefinite complex space form.

Now, the components %;; and A of the covariant derivative of
the second fundamental form of M are given by

2. (hijlzwk -+ hiﬁak) :dhij — 28 (hkjwki + hilzwkj )+ Ehijw()o.
Then, substituting dk; in this definition into the exterior derivative
of (1.3), we have

(1.9 hip=ha;=hjz, hiy= —Rsin.

Similarly the components /i and Ay (resp. kyy and him) of the
covariant derivative of A;(resp. k) can be defined by

(1. 10) erz(kijuwl‘f‘hijkza)t) :dhijk“Ztel(htjkwti+hizkwtj+hijzwu¢) +€hijkwoo,

2 (hinon+hiud) =dhip— 2 (hw;+ Pinwr;+ Rig@y) + ehizawg,,
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and the simple calculation gives rise to
(1. 11) hijlzl == h:‘jlk,
Piju- S 2 m€m(Rimhm,‘ + Rigjahtin) *ERﬁouh:j.

2. Proof of theorem

In order to prove theorem, the Laplacian of the second fundam-
ental form is first calculated. Let M’ be an (n+41)-dimensional
indefinite locally symmetric Kaehler manifold and let M be a
space-like complex hypersurface on M’. From the second definition
of (1.10) together with the second equation of (1.9) it follows that

2k5k<hiﬂkwk+hiﬂ551«)

dR/Oiji — 2 (/’lmjzwm;"}' l’limzwmj"l‘ hijrﬁ(Dml) o ER,ﬁijiwoo
= dR/u’iji +20ea (R/GAjiwAi -+ R/()miwlu =+ Rlﬁim@ 1)
(’ZAeAR/Ziﬁ@An_Zkeah(Rlﬁnﬂh;kwk -+ Rluoiihjlaa)l. | ]\“m’ju};mﬂ_)k)
DN Sy MNOR
- 24 (R/'(Tijflza)k + R/O.'ji;@k) — 2488, (R,ﬁojl'hik + -R/(_)oilhjk) Wy,
3 Zm,kemskR/mﬁhmkwk"'ZkEEleﬁijﬁ};sz_)h;
from which it turns out that

(2. D) /Zijlk - E(R/onjih.'lz'}‘ R/(l[)x'ihjk) ”i"zmﬁmR/mﬁhmk;
because the ambient space M’ is locally symmetric, Therefore, by
means of (1.11), the covariant derivative X of b is obtained:

hijki - Zm { (Rlilzizﬁ 5hki}—lmz) //L,,,,- - (R/l‘lu‘rﬁ o ehl«i}—lml) hmf}
—e(R st A Z bt ij— € (R sotbtie - R soith )
- 2R i,
[rom which it follows that
Ziltiia - Zul 2i(R wpisbtns t R wajibtns) — { (Mii) 2P+ () P} ]
- 'ZkEle/OOkilzij - hzhij”'Zk(R,éojzhik "{'R/(‘)oizhjk) 4 Zk.lR/Zijihk{)
where (1;)? 2Zwehuhy; and hy=2;(h;)%  Taking account of (2.1)
and the above equation, we then have

(2.2) é*dhz =2 i€ Bigphis - higdhi) + 22 4R i (hi)®

"‘Z;,Eth/GulzZ_ 2h4_‘hé - 42}-,135R,5(;,-; (h;k)z

i 22{,1‘.;(5}?/;;1‘[]11:1};;;,
where 7, =2 ,(hz)2 (k502 For the holomorphic bisectional curvatures
of the ambient space M’, the following conditions are assumed:
There cxist constants ¢; and ¢, such that

_78,_
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(a) H'(PY, P,)=c¢, for any space-like J-invariant planes P,” and
Py, and P/ | P,:

(b) H'(P,Q")<c, for any space-like /-invariant plane P’ and
any time-like /-invariant plane @’.

Since M is space-like, the matrix ((hz)?) is a negative semi-
definite Hermitian one and it is diagonalizable, Then a local field
of unitary frames on M can be chosen in such a way that (%;)2=
4,04, where the eigenvalues A;'s are non-positive real valued funct-
ions on M. Thus we have

hy=225=(—hy)*/n.
On the other hand, (%;ky) can be regarded as a Hermitian matrix
of order n* which is positive semi~definite and it is also diagonali-
zable. Accordingly, it has eigenvalues A; which are non-negative
and we can express as (Juhy) = 2,04, Thus, by definition, we have
2= — hs,
and hence
Zi,j,Iz,IR/EijZEblhijzclzi,jzij =—ch,,

because of the condition (a). From these inequalities it follows that
the equation (2.2) is deformed onto

(2.3) df=z2{2n+1)c,— (+d)e} f+2(n+2) F2/n
for a non-negative function f defined by —h, where the equality
holds true if and only if 2,=2 for any indices j and %; are parallel.
Under these preparations, the following Proposition is proved.

Prorosttion 2.1. Let M’ be an (n+1)-dimensional indefinite
Kaehler manifold of index 2 and let M be g complete space-like
complex hypersurface of M’'. If M’ is locally symmetric and
satisfies the conditions (a) and (b) such that [2(n+1)c;,—(nt
4)c2) 120, then M is totally geodesic.

Remarx. Let M be an #n(=2)-dimensional indefinite Kaehler
manifold. In {3], Barros and Romero proved that if M has the
bisectional curvature bounded from above and bounded from below,
then M is an indefinite complex space form. Although this fact
means that the ambient space M’ in proposition 2.1 is very close
to an indefinite complex space form, they are not the same ones,
In fact, there exists such an indefinite Kaehler manifold in Propo-
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sition 2.1 which is not of constant holomorphic curvature. This
example is next given,

Exampir.  For the complex coordinate system {zj, zp4j, Zms} Of a
(2n + 1)-dimensional complex Euclidean space C¥**!' of index 2s, let
M’ be an indefinite complex hypersurface of C¥**' given by the
equation

Zomin =22V cizar)? eEC, ] = 1.
Then it is seen in [1] and [9] that M’ is a complete complex
hypersurface of index 2s of C*'' which are locally symmetric, but
not flat. The straightforward calculation implies that M’ satisfies
the conditions (a) and (b), ¢;=¢,= -4, However, M’ is not a
complex space form, because it is not flat.

In order to prove Proposition 2,1, the following theorem due to
Omori [8] for the estimate of the Laplacian of the function of
class C? is needed. The original one is slightly different from that
quoted here, which is used by Ishihara [6] to prove the Bernstein-
type theorem of complete space-like submanifold of an anti-de
Sitter space.

Turorem (Owmor1).  Let N be a complete Riemannian manifold
whose Ricct cuvvature is bounded below and let I be a function of
class C* on N. If F is bounded below, then for any point p and
>0 there exists a point q depending on p such that

(2.4) grad I'(q) | <Ze, AF(q)>—¢, F(@Q=F(p).

Proof of Proposition 2. 1. Since the right hand side of (2.3) is
non-negative, the conclusion is trivial by the maximal principal if
M is compact.

Now, M is assumed to be non-compact and complete., For any
positive number «, a function /7 on M defined by 1/(f+a)'? is
smooth and bounded. Since the Ricci curvature of M is bounded
from below by nc, because of (1.6), and the function F is also
bounded below, the theorem due to Omori can applied to F. It
means that for any point p and for any >0 there exists a point
q at which I satisfies (2.4), from which it follows that

2e{3e FF (P} >F()*Af (@) =0

by the direct calculation. When e tends to 0, rhe left hand side

- 8§ 0
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converges to 0, because the function F is bounded. For a conver-
gent sequence {e,} such that e,—0 (m—), there exists a point
sequence {g.} so that the sequence {e.(3e.--F(g.)} converges to ()
by taking a subsequence if necessary, and hence we have
F(qm)4df(qm)_’o

By (2.3) and the definition of F it yields that

2.5 {4+ f(@2+n{2(m+ e+ (n+4) ¢} £(ga)

/{f(gm) +a}*—0,

from which it follows that, given an arbitrary small e>(, there
exists a positive integer N such that

{(n+2) —e} f(g) 2+ [n{2(n+ Ve, + (nt4) e} —2ae) F(qn) —a’e< 0
for any m>N. Since this means that the sequence {flg™} is
bounded, there is a subsequence of {f(g,)} which converges to fo
(20). Combining this fact together with (2.5), we have f,=0
and {F(g.)} converges to «~'/2. Since we have F@g)ZF(p) at
any fixed point p because of (2.4), the point is the maximal one
of F and therefore f(p)=—h,=0. This shows that M is totally
goedesic, because M is space-like,

The theorem in the introduction is an immediate consequence of
the Proposition 2. 1.
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