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A NOTE ON REAL HYPERSURFACES OF
A COMPLEX SPACE FORM

U-Hane K1 anp He-Jiv Kiv*

Introduction

In 1973 Takagi [7] classified homogeneous hypersurfaces of a
complex projective space P"C by proving that all of them could be
divided into six types, and he [8], [9] showed also if a real
hypersurface M has two or three distinct constant principal
curvatures, then M is congruent to one of the homogeneous
hypersurfaces of type A, A, or B among these ones. This result
is generalized by many others [3], [4] and [6].

On the other hand, many subjects for real hypersurfaces of a
complex hyperbolic space H"C' were investigated from different
points of view ([1], [5] etc.), one of which, done by Chen,
Ludden and Montiel [1] asserted that a real hypersurface M of
H"C is of cyclic-parallel if and only if the structure tensor J
induced on M and the shape operator ¥4 derived from the unit
normal commute each other, that is, JA=AJ. In particular, real
hypersurfaces of H"C, which are said to type A, similar to those
of type A, and A, of P'C' were treated by Montiel and Romero [5].

Recently one of the present authors [2] asserted that a real
hypersurface of a complex space form M"(¢c), c¢¥0, is of cyclic
parallel if and only if AJ=JA and he showed also a complete and
connected cyclic-parallel real hypersurface of M~(c) is congruent
to type A,, A, or Aaccording as ¢>0 or ¢<0.

A real hypersurface of a complex space form M"(¢) is said to
be covariantly cyclic constant if the cyclic sum of covariant deriv-
ative of the second fundamental form is constant. The purpose of
the present paper is to extend theorem 3 and 4 in [2] when the
hypersurfaces are of covariantly cyclic constant, that is,
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Tueorem. A real hypersurface of a complex space form M=(c),
¢=£0, 18 of covariantly cyclic constant if and only if AJ=TA,
and a complete and connected covariantly cvclic constant real
hypersurface of M"(c) is congruent to type A,, A, or A according
as ¢>0 or ¢<0.

1. Preliminaries

We begin with recalling fundamental propertics on real hypersu-
rfaces of a complex space form. Let M"(¢) be a real 2n-dimensional
complex space form endowed with a metric tensor G of a constant
holomorphic sectional curvature ¢ and a parallel almost complex
structure F, and be covered by a system of coordinate neighbor-
hoods {U;x"}. Let M be a real hypersurface of M"(¢) covered by
a system of coordinate neighborhoods {V ; v*} and immersed
isometrically in M"(c) by the immersion i : M—M"(¢c). Throughout
the present paper the following convention on the range of indices
are used, unless otherwise stated:

A B, =1,2,,20 58,y =1,2, -, 2n—1.

The summation convention will be used with respect to those
system of indices, When the argument is local, M need not be
distinguished from ¢(M). Thus, for simplicity, a point p in M
may be identifed with the point 7(p) and a tangent vector X at
p may also be identified with the tangent vector i.(X) at ()
via the differential i, of ;. We represent the iramersion i locally
by x'=x"(y") and B;=(B}) are also (2n—1)-linearly independent
local tangent vectors of M, where B}=9;x* and 3,=8/8y’. A unit
normal C' to M may then be chosen. The induced Riemannian
metric g with components g; on M is given by g,=G(B, B)
because the immersion is isometric,

For the unit normal C to M, the following representations are
obtained in each coordinate neighborhood :

(I.D FB;=]!B,+PC, FC=—-PB,

Where we have put J;=G(FB; B;) and P,=G(FB,C), P" being
components of a vector field P associated with P; and J;=]'g,.
By the properties of the almost Hermitian structure F, it is clear
that J; is skew-symmetric, A tensor field of type (1,1) with
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components /! will be denoted by J. By the properties of the
almost complex structure F, the following relations are then given :

JiJi==8+PP, P Jt=0, P,Ji=0, P.Pi=1, &l ]i=gi— PP,
that is, the aggregate (J, g, P) defines an almost contact metric
structure. Denoting by [7; the operator of Van der Waerden-
Bortolotti covariant differentiation formed with g, equations of
the Gauss and Wiengarten for M are respectively obtained:

(1.2) ViBi=hC, p,C=—mB,
where fj;; are components of a second fundamental form ¢, A= (k)
which is related by k;=h;g, being the shape operator derived
from C. We notice here that /; is symmetric. By means of
(1.1) and (1.2) the covariant derivatives of structure tensors are
vielded:

(1.3) ViJuw=—hiPy+huPi 7P —h;, J1.

Since M"(c) is of constant holomorphic sectional curvature ¢, the
Gauss and Codazzi equations are respectively given:

(1. 4) Rkjih:%(gkhgji_gjhgki+fkhfjn'*‘fjhjki‘Z_ij]fh) ’Jl‘hkhhji‘ hjhhki,
(1.5) thfr“V;hkf:%Akm Aiz=PiJ i~ P; Ju—2P: ],

where R, are the components of the Riemannian curvature tensor
R of M. Let S; be the components of the Ricci tensor S of M,
then the Gauss equation implies

(1.6) Si=-g{(2n-+ 1)gs— 3PP +hhy—Jt,
where % denotes the trace of the shape operator A and ni=h,h;.

2. Proof of the Theorem

Let M be a real hypersurface of a complex space form M"(c).
The hypersurface M is called covariantly cyclic constant if the
cyclic sum of P is constant, namely

2.1 Vu(Zibsit 7 o+ ;) = 0.

Throughout the present paper we only consider the case where
the holomorphic sectional curvature ¢ is not zero.

From now on we suppose that M is of covariantly cyclic constant.
Then we have from (1.5)
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2.2) BVmVIahii:%(VmAkii+VmAkii)-
By the second equation of (1.5) and (1.3), it follows that
(2.3) VmV/zhij:_Z‘{(Vij)]ika‘ PP Jst— PniP; Py— Ri PP,

+2hu PP} .
If we substitute (1.4) and (2.3) into the Ricci formula for #;,
which is given by
Tl i~ 47 ;= ~ Rojiht; — R,
then we have
(2.4)  Bihni— b+ Badtin— Wb

:-Z—{hm.‘(ghjhpkpj)hhlai(gmi_—PmPi) R gu—PuPs)

= Gmi— PnP;) +]jk(VmPi+l7iPm)"‘]im(VkPi+ViPk)
+ JuZuP 47 iPr) —JauZhPs+7 Py + 2] (P i P4 17:P)) Y,
where we have used the second equation of (I.3).
If we contract this to the indices 7 and 7,

2.5)  hs= {hz~—%(n+ 1)}hj;~l—ch,s TiJ

G P Pt (1 PPy} + S g3 PP,
where h,=h;h", which yields

(2.6) hhf,P':(hz—%n)h,-,P’Jr%aP,-,
where we have defined a=#, P P:. Thus it follows that
(2.7) hﬂ:{hz——%(n—l)}a, A=JDiP"

On the other hand, if we transvect (2. 4) with J* and P/PpP*
respectively and make use of the properties of the almost contact
metric structure (J, g, P), then we can see that

(2.8) Jr(hahi+hi k)
= @D TPt 7P) — S ((P7.P) P+ (PP P,
(2.9) ahi, P =ph,,P".
Combining (2.6) and (2.7) with (2.9), it follows that alh,Pr—
aP;)=0 and hence a(8—a?)=0.
Let M, be a set consisting of points of M at which the function
f—a® does not vanish and suppose that M, is not empty. Then M,
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is an open submanifold of M. We have a=( and thus Bl P =0
on M; because of (2.9). By transvecting A"F*, it follows that
B?=0 and hence A vanishes on M,. Thus it is a contradiction,
Accordingly we have S=a? on M, which means that P is the
principal curvature vector corresponding to a, that is,

(2.10) h Pr=aP;.
Applying P to (2.8) and summing up m, we obtain
(2.1 Pp.P=0

because of the fact that ¢3=0. Now we will prove that the principal
curvature a is constant. Differentiating (2.10) covariantly along
M, we find

(2.12) (Filt;) P+ by P = P+ a7 o P,
where a,=p .
By means of (1.5) and the properties of the almost contact metric
structure (/, g, P), we then have

(2.1 *---g—fkﬂﬂhhhjs]”’?aﬁpj‘afpk*‘a(hkr]f“hjr]/:)-

Applying P* to above equation and summing up to k, we can see
a;=BP; for some function B on M. Differentiating this covariantly,
we find o= (p;B)P;—Bh;J; by means of (1.3) and hence
B(hi,Ji—h.J?)=0. Let M, be a set consisting of points at which
the function B dose not vanish and suppose that M, is not empty.
Then M, is an open submanifold of M and we have k, Ji—h,]7=0

on M, Thus (2.13) is reduced to —%]kﬁr 2hyh; J =0, which

together with (2.8) and (2.11) gives h;, Ji+h;, Ji=0. Consequently.
h; Ji=0, which produces a contradiction, Thus. by the definition
of B, we see that a is constant everywhere.

Transvecting (2.4) with P/P" we can easily verify that

(2. 14) ah?k_(Y?}lfk—%a’(gkf‘"PkPi) =0.
If a==0, then we have hg—ah~—§—(n—1):0, which enables us to
know f3Ji=Jikt But if a=0, (2.13) implies Ak, ]fsf%jkj, which

means h;, Ji+h;, J3=0 by the same discussion as above, Consequently
we see in any case that A J!=]7h' Combining this with Theorem
3 and 4 in [2], the theorem is completely proved.
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