Synthesis and Antibacterial Activities of Triphenyltin Cephalosporins

Sang-Woo Park, Youseung Kim and Young Keun Chung

Organic Chemistry Laboratory, Korea Advanced Institute of Science and Technology Seoul 131, Korea Department of Chemistry, Seoul National University Seoul 151-742, Korea (Received July 24, 1989)

Sir:

Although it has been known that organometallic β -lactam compounds improve the resistance to β -lactamases as well as their pharmacological activities, only a few results on organometallic β -lactam antibiotics were reported. In the course of our extensive study on the development of new cephalosporins, we were interested in organotin

$$\begin{array}{c} ph_{3}SnCl + H_{2}N \\ O \\ \end{array} \begin{array}{c} S \\ COOH \end{array} \begin{array}{c} TEA \\ THF \end{array} \begin{array}{c} H \\ ph_{3}SnN \\ O \\ \end{array} \begin{array}{c} R \\ COONEt_{3} \\ H \end{array} \\ \begin{array}{c} a \\ R = OAc \\ b \\ R = H \\ CH_{3} \end{array} \begin{array}{c} N \\ N \\ CH_{3} \end{array}$$

compounds since they show some biological activities. ⁵⁾ In this communication, we wish to report the first example of organotin cephalosporins and their detailed *in vitro* antibacterial activities.

Organotin cephalosporins were synthesized as outlined in Scheme 1. A solution of triphenyltin in THF was added slowly to a suspension of 7-aminocephalosporanic acid(1a) in the presence of TEA in THF. The contents were stirred for 1hr at room temperature to give the triphenyltinamidocephalosporanic triethylammonium salt(2a) in 40% yield. The compound synthesized were characterized by NMR and IR spectral measurement. The IR spectra indicates that the carbonyl group of β -lactam is not bound to the tin ion.

Table I shows antibacterial spectra of compounds 2a-2c as compared with those of cefotaxime. Against Gram-positive bacteria, triphenyltin cephalosporins exhibited activities comparable to

Table I. In vitro antibacterial activity (MIC, μ g/ml)^{a)} of compounds 2a, 2b, 2c and cefotaxime

Organism	2a	2b	2c	cefotaxime	
Streptococcus faecium MD 8b	6.23	6.25	25		
Staphylococcus aureus SG 511	1.563	1.563	1.563	1.563	
Staphylococcus aureus 285	3.125	1.563	1.563	3.125	
Staphylococcus aureus 503	1.563	1.563	0.781	1.563	
Escherichia coli O 55	100	25	100	0.013	
Escherichia coli DC 2	6.25	6.25	6.25	0.013	
Escherichia coli 1507E	100	50	100	0.049	
Pseudomonas aeruginosa 9027	100	100	100	12.5	
Pseudomonas aeruginosa 1771	100	25	50	6.25	
Pseudomonas aeruginosa 1771M	50	12.5	25	0.098	
Klebsiella aerogenes 1082E	50	25	100	0.781	
Enterobacter cloacae P 99	100	100	100	100	

a) Mueller Hinton Agar; dilution method; 37 °C, 18 hours

those of cafotaxime. The compounds have weak activities against *E. coli* and P. aeruginosa but were inactive against other Gram-negative bacteria. The interesting feature of triphenyltin cephalosporins is the excellent activity against Gram-positive bacteria regardless of the side chain at the C-3 position.

For further improvements and to establish the structure-activity relationship of the metallocene compounds, the synthesis of organometallic β -lactams is under study now.

ACKNOWLEDGEMENT

The authors wish to thank Dr. Eun Kyu Park at KRICT for carring out the biological evaluation.

*IR frequences (cm-1) of tin derivatives

	NH	β -lactamic CO	CO ₂	
2a	3400	1767	1615	
2b	3400	1767	1620	
3c	3370	1768	1609	

LITERATURE CITED

- Simionescu, C.R., Lixandru, T., Tataru, L., Mazilu, I., Vâtă, M. and Luca, S.T.: Heterodisubstituted ferrocene derivatives; β-Lactamic antibiotics. J. Organomet. Chem. 252, C43 (1983).
- Sodhi, G.S., Bajaj, R.K. and Kaushik, N.K.: Semi-synthetic antibiotics: Organometallic derivatives of 6-amino penicillinic acid. *Inorg. Chim. Acta.*, 92, L27 (1984).
- 3. Kamrah, S., Sodhi, G.S. and Kaushik, N.K.: Semi-synthetic antibiotics: Titanium(IV), zirconium(IV) and mercury(II) complexes of 6-amino penicillinic acid. *Inorg. Chim. Acta.*, 107, 29 (1985).
- Simionescu, C.R., Lixandru, T., Scutaru, D. and Vâtă, M.: Mono-and heterodi-substituted derivatives of ferrocene; β-Lactamic antibiotics.
 J. Organomet. Chem., 292, 269 (1985).
- 5. Köpf-Maier, P. and Köpf, H.: Non-Platinum-group metal antitumor agents: History, current status, and perspectives. *Chem. Rev.*, **87**, 137 (1987).