A Pair of Commuting Operaters on Hilbert Spaces

Hae Gyung Lee

1. Introduction

Since the concept of joint spectrum for a family of operators was initially introduced by R. Arens and A.P. Calderon [1], several authors have established its definitions and properties. The typical and successful definitions among them have carried out by J.L. Taylor [8] and A.T. Dash [6].

In this paper we give a characterization of the joint spectrum, in the sense of J.L. Taylor of a pair of commuting operators on Hilbert spaces and some applications are given.

Let H be a complex Hilbert space and $B(H)$ the algebra of all linear continuous operators on H. Let $a=\left(a_{1}, a_{2}\right) \subset B(H)$ be a pair of commuting operators. Consider the sequence

$$
\begin{equation*}
0 \longrightarrow H \xrightarrow{\delta_{a}^{0}} H \oplus H \xrightarrow{\delta_{a}^{\mathrm{i}}} H \longrightarrow 0 \tag{1.1}
\end{equation*}
$$

where $\delta_{a}^{0}(x)=a_{2} x \oplus a_{2} x \quad(x \in H) \quad$ and $\quad \delta_{a}^{1}\left(x_{1} \oplus x_{2}\right)=a_{1} x_{2}-a_{2} x_{1}\left(x_{1} x_{2} \in H\right)$. Clearly, $a_{1} a_{2}=a_{2} a_{1}$ implies $\delta_{a}^{1} \cdot \delta_{a}^{0}=0$. Then, J.L. Taylor has defined a to be nonsingular if the sequence (1.1) is exact; i.e. im $\delta_{a}^{0}=$ ker $\delta_{a^{*}}^{1}$. And he has defined the joint spectrum $\sigma(\alpha, H)$ of a on H, to be the complement of the set of all $z-a=\left(z_{1}-a_{1}, z_{2}-a_{2}\right)$ is nonsingular on H.

[^0]
2. Invertibility of a commuting pair

We begin the following. Suppose that $a=\left(a_{1} a_{2}\right) \subset B(H)$ is nonsingular on H. Consider the dual sequence of (1.1), namely

$$
\begin{equation*}
0 \longrightarrow H \xrightarrow{\delta_{a}^{1^{*}}} H \oplus H \xrightarrow{\delta_{a}^{0^{*}}} H \longrightarrow 0, \tag{2.1}
\end{equation*}
$$

where $\delta_{a}^{1^{*}}(x)=-a_{2}^{*} x \oplus a_{1}^{*} x \quad(x \in H)$ and $\delta_{a}^{0^{*}}\left(x_{1} \oplus x_{2}\right)=a_{1}^{*} x_{1}+\dot{a}_{3}^{*} x_{2} \quad\left(x_{1}, x_{2} \in H\right)$. We recall that the pair $a^{*}=\left(a_{1}^{*}, a_{2}^{*}\right)$ is nonsingular on H if the sequence (2.1) is exact.

Lemma 2.1. If $a=\left(a_{1}, a_{2}\right)$ is nonsingular on H, then both $a_{1} a_{1}$ $+a_{2} a_{2}$ and $a_{1} a_{1}^{*}+a_{8} a_{2}^{*}$ are invertible on H.

Proof. Let us show that $\dot{a}_{1} a_{1}+a_{2}^{*} a_{2}$ is injective and surjective on H. If $\left(a_{1}^{*} a_{1}+a_{2}^{*} a_{2}\right) x=0$ for a certain $x \in H$, then $a_{1} x \oplus a_{2} x \in \operatorname{ker} \delta_{a}^{\sigma^{+}}=$ (im $\left.\delta_{a}^{0}\right)$. But $a_{1} x \oplus a_{1} x \in \operatorname{im} \delta_{a}^{0}$; hence $a_{1} x \oplus a_{2} x \in\left(\operatorname{im} \delta_{a}^{0}\right)$ กim $\delta_{a}^{0}=$ $\{0\}$. Thus $a_{1} x=a_{2} x=0$. Since ker $\delta_{a}^{0}=0$, we have $x=0$. Take an arbitrary $y \in H$ and let us find an $x \in H$ such that $y=a_{1} a_{i} x+a_{2} a_{2} x$. We infer that $\delta_{a}^{0+}:\left(\operatorname{ker} \delta_{a}^{00}\right) \rightarrow H$ is an isomorphism, and therefore $y=\delta_{a}^{0^{*}}$ $\left(y_{1} \oplus y_{2}\right)$ with $y_{1} \oplus y_{2} \in\left(\operatorname{ker} \delta_{a}^{0^{0}}\right)^{+=} \operatorname{im} \delta_{\mathrm{a}}^{0}$; hence $y_{1} \oplus y_{2}=a_{1} x \oplus a_{2} x$. Analogously, the operator $a_{1} \dot{a_{1}}+a_{2} a_{2}^{*}$ is invertible and this completes the proof of the lemma.

Theorem 2.2. Let $a=\left(a_{1}, a_{2}\right) \subset B(H)$ be a commuting pair. Then a is nonsingular on H if and only if the operator

$$
\alpha(a)=\left(\begin{array}{cc}
\dot{a_{1}} & \dot{a_{2}} \tag{2.2}\\
-a_{2} & a_{1}
\end{array}\right)
$$

is invertible on $H \oplus H$.
Proof. According to Lemma 2.1, it is clear that the operator

$$
\left(\begin{array}{lc}
a_{1}\left(\dot{a_{1}} a_{1}+\dot{a_{2}} \vec{a}_{2}\right)^{-1} & -\dot{a_{2}}\left(a_{1} \dot{a_{1}}+a_{2} \dot{a_{2}}\right)^{-1} \tag{2.3}\\
a_{2}\left(\dot{a_{1}} a_{1}+\dot{a_{2}} \dot{a_{2}}\right)^{-1} & \left.\dot{a_{2}\left(a_{1}\right.} \dot{a_{1}}+a_{1} \dot{a_{2}}\right)^{-1}
\end{array}\right)
$$

is a right inverse for the operator $\alpha(a)$ given by (2.2) ; hence $\alpha(a)$ is surjective on $H \oplus H$. Let us also notice that $\alpha(a)$ is injective too. Indeed, if $\alpha(a)\left(x_{3} \oplus x_{2}\right)=0$, then $x_{1} \oplus x_{2} \in \operatorname{ker} \delta_{a}^{0^{*}}$ nim $\delta_{a}^{1}=\{0\}$, and hence $x_{1}=x_{2}=0$. Conversely, suppose that $\alpha(a)$ is invertible on $H \oplus H$. The $\alpha(a)^{*}$ is invertible; therefore

$$
\alpha(a) \alpha(a)^{*}=\left(\begin{array}{ll}
a_{1} a_{1}+a_{2}^{*} a_{2} & 0 \\
0 & a_{2} a_{1}^{*}+a_{i} a_{2}^{*}
\end{array}\right)
$$

is invertible, and hence $\left(\dot{a_{1}} \dot{a_{1}}+\dot{a_{2}} \tilde{A}_{2}\right)$ and $\left(a_{1} \dot{a_{1}}+\dot{a_{2}} \dot{a_{2}}\right)$ are operators from $B(H)$. Let us prove that the sequence (1.1) is exact. Indeed, if $\delta_{a}^{0}(x)=a_{1} x \oplus a_{2} x=0$, then $\left(a_{1} a_{1}+\dot{a_{2}} a_{2}\right) x=0$, whence $x=0$. Assume now that $\delta_{a}^{1}\left(x_{1} \oplus x_{2}\right)=a_{1} x_{2}-a_{2} x_{1}=0$. If $y=a_{1}^{*} x_{1}+a_{2}^{*} x_{2}$, then $a(a)\left(x_{1} \oplus x_{2}\right)=y \oplus 0$; hence $x_{1} \oplus x_{2}=\alpha(a)^{-1}(y \oplus)$), and thus on account of (2.3) we obtain

$$
\begin{aligned}
& x_{1}=a_{1}\left(\dot{a}_{1} a_{1}+a_{2} a_{2}\right)^{-1} y, \\
& x_{2}=a_{2}\left(a_{1}^{*} a_{1}+\dot{a_{2}} a_{2}\right)^{-2} y,
\end{aligned}
$$

i.e. the exactness of (1.1) at the second step. Finally, if $y \in H$ is arbitrary, then $x_{1}=a_{1}\left(a_{1} a_{1}^{*}+a_{2} a_{2}\right)^{-1} y(G=1,2)$ satisfy the equation $a_{1} x_{1}+a_{2} x_{2}$ $=y$, and the proof is complete.

Notice that $a=\left(a_{4} a_{2}\right) \subset B(H)$ is nonsingular if and only if the matnix

$$
\alpha\left(a^{*}\right)=\left(\begin{array}{ll}
a_{1} & a^{2} \\
-a_{2}^{*} & a_{1}^{*}
\end{array}\right)
$$

is invertible on $H \oplus H$, and also if and only if the matrix

$$
\alpha(a)^{*}=\left(\begin{array}{cc}
a_{1} & -\dot{a_{2}} \\
a_{2} & \dot{a_{1}}
\end{array}\right)
$$

is invertible on $H \oplus H$.
Corollary 2.3. If A is any commutative algebra of operators on H, then the map

$$
A^{2} \ni a \longrightarrow \alpha(a) \in B(H \oplus H)
$$

is R -linear.
Proof. Since the maps $\delta_{a}^{\hat{0}}$ and δ_{a}^{i} are linear on $A^{2}, \alpha(a)$ is R-linear.
Remark. The set of matrices $\left\{\alpha(z): z \in C^{Q}\right\}$ can be identified with the algebra of quatemions and that the map $z \rightarrow \alpha(z)$ is an R-linear isometric isomorphism[10].

Corollary 2.4. For any $z=\left(z_{1}, z_{2}\right) \in C^{2}, z \neq 0, \alpha(z)^{-1}$ exists and $\alpha(z)^{-1}$ $=\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{-1} \alpha(z)$.

Proof. It is easy to see that $\sigma(z, H)=\{z\}$, hence $\alpha(z)$ is invertible for any $z \neq 0$. Then

$$
\alpha(z)^{-1}=\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{-1} \alpha(z)
$$

Corollary 2.5. For any $z \in C^{2}, z \neq 0$, we have

$$
\|\alpha(z)\|=\|z\| \quad \text { and } \quad\left\|\alpha(z)^{-1}\right\|=\|z\|^{-1}
$$

where $\|z\|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$.
Corollary 2.6. If $a=\left(a_{1}, a_{2}\right)$ is nonsingular on H, then we have
the following commuting relations:

$$
\begin{align*}
& a_{1}\left(\dot{a_{1}} a_{1}+\dot{a_{2}} \dot{a}_{2}\right)^{-2} \dot{a_{1}}+\dot{a_{2}}\left(a_{1} \dot{a_{1}}+a_{2} \dot{a_{2}}\right)^{-1} a_{2}=1 \\
& a_{2}\left(\dot{a_{1}} a_{1}+\dot{a_{2}} a_{2}\right)^{-1} \dot{a_{2}}+\dot{a_{1}}\left(a_{1} a_{1}+a_{2} \dot{a_{2}}\right)^{-1} a_{1}=1 \tag{2.4}\\
& a_{1}\left(\dot{a_{1}}+\dot{a_{1}}+\dot{a_{2}}\right)^{-1} \dot{a_{2}}+\dot{a_{2}}\left(a_{1} a_{1}+a_{2} \dot{a_{2}}\right)^{-1} a_{1}=0
\end{align*}
$$

Formulas (2.4) can be obtained by using the fact that (2.3) provides also a left inverse for $\alpha(a)$.

3. Joint spectrum

Lemma 3.1. For a commuting pair of operators $a=\left(a_{4} a_{2}\right) \subset B(H)$, we have $\sigma(a, H)=C^{2}-\left(z \in C^{2} ;(z-a)^{-1} \in B(H \oplus H)\right\}$.

Corollary 3.2. If $a=\left(a_{b} a_{2}\right) \subset B(H)$ is a commuting pair, then $\alpha(a, H)=$ $C^{2}-\left\{z \in C^{2} ;(\alpha(z)-\alpha(a))^{1} \in B(H \oplus H)\right\}$.

Definition 3.3. The mapping

$$
C^{2}-\alpha(a, H) \ni z \longrightarrow R(z, a)=(\alpha(z)-\alpha(a))^{\cdot 1} \in B(H \oplus H)
$$

is called the resolvent of a.

Lemma 3.4. For a commuting pair $a=\left(a_{1}, a_{2}\right) \subset B(H)$, the joint spectrum $\sigma(a, H)$ is a closed set and the resolvent $R(z, a)$ is an R-analytic function in $C^{2}-\sigma(a, H)$.

Proof. Fix a point $z_{0} \notin \sigma(a, H)$. Since the map $z \rightarrow \alpha(z)$ is isometric, then for $z \in C^{2}$ such that $\left\|z-z_{0}\right\|<\left\|\alpha\left(z_{0}-a\right)-1\right\|^{-1}$, the series

$$
\alpha\left(z_{0}-a\right)^{-1} \sum_{k=0}^{\infty}(-1)^{k}\left(\alpha\left(z-z_{0}\right) \alpha\left(z_{0}-a\right)^{-1}\right)^{k}
$$

is absolutely convergent and defines $(z-a)^{2}$. In particular, the set $C^{2}-\sigma(a, H)$ is open. Notice that $\alpha\left(z-z_{0}\right)$ is a polynomial of degree one in z_{1} and z_{k}^{*}, where we get easily that $\alpha(z-a)^{-1}$ is R-analytic in $C^{2}-\sigma(a, H)$.

Lemma 3.5. For a commuting pair $a=\left(a_{1}, a_{2}\right) \subset B(H)$ and any 2 in C^{2} such that $\|z\|>\|a(a)\|$, we have z is not in $\sigma(a, H)$ and

$$
\begin{equation*}
(\alpha(z)-\alpha(a))^{-1}=\sum_{k=0}^{\infty}\left(\alpha(z)^{-1} \alpha(a)\right)^{k} \alpha(z)^{-1} \tag{3.1}
\end{equation*}
$$

is absolutely and uniformly convergent on the sets $\left\{z \in C^{2} ;\{z \|>r\}\right.$ with $r>\alpha(a) \|$.

Froof. According to Corohiary 2.5, we have that if $\|z\|>\|\alpha(a)\|$, then $\left\|\alpha(a)^{-1} \alpha(a)\right\|<1$, hence the series (3.1) is absolutely convergent. It is straightforward to verify that (3.1) defines the inverse of $\alpha(a)$ $\alpha(a)$. If $r>\|\alpha(a)\|$, then for any z in C^{2} such that $\|z\|>r$ we obtain by a direct estimation

$$
\left\|(\alpha(z)-\alpha(a))^{-1}\right\| \leq r^{-1}(r-\|\alpha(a)\|)^{-1}
$$

hence the convergence of (3.1) is uniform.
Notice that $\lim _{\| z \rightarrow \infty}\left\|(a(z)-\alpha(a))^{-1}\right\|=0$.
Theorem 3.6. Let $a=\left(a_{1}, a_{2}\right) \subset B(H)$ be a pair of commuting operators. Then the joint spectrum $\sigma(a, H)$ of a is a compact nonempty set in C^{2}.

Proof. On account of the Lemma 3.4 and Lemma 3.5, $\sigma(a, H)$ is a compact subset of C^{2}. Let us assume that $\sigma(a, H)$ is empty. Then by Theorem 2.2 the operator

$$
\left(\left(z_{1}-a_{1}\right)^{*}\left(z_{1}-a_{1}\right)+\left(z_{2}-a_{2}\right)^{*}\left(z_{2}-a_{2}\right)\right)^{-1}
$$

does exist, therefore the right ideal generated in $B(H)$ by $z-a$ is equal to $B(H)$ for any $z=\left(z_{1}, z_{2}\right) \in C^{2}$ which is, according to [3], a contradiction.

4. Applications

Let H be a fixed Hilbert space. Let $a=\left(a_{4}, a_{2}\right)$ be a commuting pair of linear operators on H and let K be a closed subspace of H, K reducing a, i.e. $a_{r} K \subset K, a_{j}^{*} K \subset K$ for $j=1,2$. We denote by $a \mid \bar{K}$ the restrictions ($a_{1}\left|K, a_{2}\right| K$).

Proposition 4.1. Assume that $a=\left(a_{3} a_{2}\right) \subset B(H)$ is nonsingular on H and K be a closed subspace of H, K reducing a. Then $a!K$ is nonsingular if and only if $\alpha(a)^{-1}(K \oplus K) \subset K \oplus K$.

Proof. We apply Theorem 2.2 If $a \mid K$ is nonsingular, then $\alpha(a \mid K)^{-1} \in B(K \oplus K)$. Take $\eta \in K \oplus K$. We have

$$
\alpha(a)\left(\alpha(a)^{-1} \eta-\alpha(a \mid K)^{-1} \eta\right)=0,
$$

hence $\alpha(a)^{-1} \eta=\alpha(a \mid K)^{-1} \eta \subset K \oplus K$. Conversely, if $\alpha(a)^{-1}(K \oplus K) \subset K \oplus K$, then we have

$$
\alpha(a)^{-1} \mid K=\alpha(a \mid K)^{-1},
$$

hence $a \mid K$ is nonsingular.
For any set $F \subset C^{2}$, let us denote by $a F$ the boundary of F.
Proposition 4.2. Let K be a closed subspace of H, K reducing a. Then we have the relation

$$
\partial \sigma(a, K) \subset \sigma(a, H)
$$

Proof. Let us choose a point $z_{0} \in \sigma(a, K)$ and suppose that $z_{0} \notin \sigma(a, H)$.

Then there is a sequence $z_{k} \notin \sigma(a, K) \cup \sigma(a, H)$ such that $z_{k} \rightarrow z_{0}$ as $k \rightarrow \infty$. If $\eta \in K \oplus K$ is arbitrary, we can write

$$
\left(\alpha\left(z_{0}\right)-\alpha(a)\right)^{-1} \eta=\lim _{k \rightarrow \infty}\left(\alpha\left(z_{\mathrm{k}}\right)-\alpha(a)\right)^{-1} \eta \in K \oplus K
$$

therefore $\alpha\left(z_{0}\right)-\alpha(a)$ is nonsingular on K, which is a contradiction.
Corollary 4.3. If K_{1} and K_{2} are closed subspaces, reducing a, such that $\sigma\left(a, K_{1}\right) \cap \sigma\left(a, K_{2}\right)=\phi$, then $K_{1} \cap K_{2}=0$,

Proof. Indeed, $K_{2} \cap K_{2}$ is reducing a, therefore

$$
\partial \sigma\left(a, K_{1} \cap K_{2}\right) \subset \sigma\left(a, K_{1}\right) \cap \sigma\left(a, K_{2}\right)=\phi,
$$

hence

$$
\sigma\left(a, K_{1} \cap K_{2}\right)=\phi \text {, thus } K_{1} \cap K_{2}=0 .
$$

References

1. R. Arens and A.P. Calderon, Analytic function of several Banach algebra elements, Ann. of Math., 62(1955), 204-216.
2. A. Brown and C. Pearcy, Spectra of tensor product of operators, Proc. Amer. Math. Soc., 17(1966), 162-166.
3. J. Bunce, The joint spectrum of commuting non-normal operators, Proc. Amer. Math. Soc., 29(1971), 499-505.
4. 2. Ceausescu and F.H. Vasilescu. Tensor products and Taylor's joint spectrum, Studia Math., 62(1978), 305-311.
1. M. Cho and M. Takaguchi, Identity of Taylor's joint spectrum and Dash's joint spectrum, Studıa Math., 70(1982), 225-229.
2. A.T. Dash, Joint spectra, Studia Math., 45(1973), 225-237.
3. M. Schechter, On the spectra of operators on tensor products, I. Functional Analysis, 4(1969), 95-99.
4. JL. Taylor, A joint spectrum for several commuting operators, J. Functional
```
A Parr of Commuting Operaters
    on Hulbert Spaces

Analysis, 6(1970), 172-191.
9. The analytic functional calculus for several commating operators, Acta Math., 125(1970), 1-38.
10. F.H. Vasilescu, A characterization of the jount spectrum in Hibert spaces, Rev. Roum. Math. Pure and Appl., 22(1977), 1003-1009.
11. ___ On pairs of commuting operators, Studia Math., 62'1977), 201-205.

Pusan National University
Pusan 609-735
Korea```


[^0]:    Received October 30, 1989

