A Pair of Commuting Operaters on Hilbert Spaces

Hae Gyung Lee

1. Introduction

Since the concept of joint spectrum for a family of operators was initially introduced by R. Arens and A.P. Calderon [1], several authors have established its definitions and properties. The typical and successful definitions among them have carried out by J.L. Taylor [8] and A.T. Dash [6].

In this paper we give a characterization of the joint spectrum, in the sense of J.L. Taylor of a pair of commuting operators on Hilbert spaces and some applications are given.

Let *H* be a complex Hilbert space and B(H) the algebra of all linear continuous operators on *H*. Let $a=(a_1,a_2)\subset B(H)$ be a pair of commuting operators. Consider the sequence

$$(1.1) \qquad 0 \longrightarrow H \xrightarrow{\delta_a^0} H \oplus H \xrightarrow{\delta_a^1} H \longrightarrow 0,$$

where $\delta_a^0(x) = a_1 x \oplus a_2 x$ $(x \in H)$ and $\delta_a^1(x_1 \oplus x_2) = a_1 x_2 - a_2 x_1(x_1, x_2 \in H)$. Clearly, $a_1 a_2 = a_2 a_1$ implies $\delta_a^1 \cdot \delta_a^0 = 0$. Then, J.L. Taylor has defined *a* to be nonsingular if the sequence (1.1) is exact; i.e. im $\delta_a^0 =$ ker δ_a^1 . And he has defined the joint spectrum $\sigma(a, H)$ of *a* on *H*, to be the complement of the set of all $z - a = (z_1 - a_1, z_2 - a_2)$ is nonsingular on *H*.

Received October 30, 1989

Hae Gyung Lee

2. Invertibility of a commuting pair

We begin the following. Suppose that $a = (a_b a_b) \subset B(H)$ is nonsingular on *H*. Consider the dual sequence of (1.1), namely

$$(2.1) \qquad 0 \longrightarrow H \xrightarrow{\delta_a^{1^*}} H \oplus H \xrightarrow{\delta_a^{0^*}} H \longrightarrow 0,$$

where $\delta_a^{1^*}(x) = -a_2 x \oplus a_1 x$ $(x \in H)$ and $\delta_a^{0^*}(x_1 \oplus x_2) = a_1 x_1 + a_2 x_2$ $(x_1, x_2 \in H)$. We recall that the pair $a^* = (a_1, a_2)$ is nonsingular on H if the sequence (2.1) is exact.

Lemma 2.1. If $a=(a_1,a_2)$ is nonsingular on H, then both $a_1a_1 + a_2a_2$ and $a_1a_1 + a_2a_2$ are invertible on H.

Proof. Let us show that $a_1a_1 + a_2a_2$ is injective and surjective on H. If $(a_1a_1 + a_2a_2)x = 0$ for a certain $x \in H$, then $a_1x \oplus a_2x \in \ker \delta_a^{0^*} = (\operatorname{im} \delta_a^0)^{\perp}$. But $a_1x \oplus a_2x \in \operatorname{im} \delta_a^0$; hence $a_1x \oplus a_2x \in (\operatorname{im} \delta_a^0)^{\perp} \cap \operatorname{im} \delta_a^0 = \{0\}$. Thus $a_1x = a_2x = 0$. Since $\ker \delta_a^0 = 0$, we have x = 0. Take an arbitrary $y \in H$ and let us find an $x \in H$ such that $y = a_1a_1x + a_2a_2x$. We infer that $\delta_a^{0^*}$: $(\ker \delta_a^{0^*})^{\perp} \to H$ is an isomorphism, and therefore $y = \delta_a^{0^*}$ $(y_1 \oplus y_2)$ with $y_1 \oplus y_2 \in (\ker \delta_a^{0^*})^{\perp} = \operatorname{im} \delta_a^0$; hence $y_1 \oplus y_2 = a_1x \oplus a_2x$. Analogously, the operator $a_1a_1 + a_2a_2$ is invertible and this completes the proof of the lemma.

Theorem 2.2. Let $a=(a_1,a_2) \subset B(H)$ be a commuting pair. Then a is nonsingular on H if and only if the operator

(2.2)
$$\alpha(a) = \begin{pmatrix} a_1 & a_2 \\ -a_2 & a_1 \end{pmatrix}$$

is invertible on $H \oplus H$.

Proof. According to Lemma 2.1, it is clear that the operator

A Pair of Commuting Operators on Hilbert Spaces

(2.3)
$$\begin{pmatrix} a_1(\dot{a_1}a_1 + \dot{a_2}a_2)^{-1} & -\dot{a_2}(a_1\dot{a_1} + a_2\dot{a_2})^{-1} \\ a_2(\dot{a_1}a_1 + \dot{a_2}a_2)^{-1} & \dot{a_2}(a_1\dot{a_1} + a_1\dot{a_2})^{-1} \end{pmatrix}$$

is a right inverse for the operator $\alpha(a)$ given by (2.2); hence $\alpha(a)$ is surjective on $H \oplus H$. Let us also notice that $\alpha(a)$ is injective too. Indeed, if $\alpha(a)(x_1 \oplus x_2) = 0$, then $x_1 \oplus x_2 \in \ker \delta_a^{0^*} \cap \inf \delta_a^1 = \{0\}$, and hence $x_1 = x_2 = 0$. Conversely, suppose that $\alpha(a)$ is invertible on $H \oplus H$. The $\alpha(a)^*$ is invertible; therefore

$$\begin{array}{c} \alpha(a)\alpha(a)^{*} = \begin{pmatrix} a_{1}a_{2} + a_{2}a_{2} & 0 \\ 0 & a_{1}a_{1} + a_{2}a_{2} \end{pmatrix} \end{array}$$

is invertible, and hence $(a_1a_1 + a_2a_2)$ and $(a_1a_1 + a_2a_2)$ are operators from B(H). Let us prove that the sequence (1.1) is exact. Indeed, if $\delta_a^0(x) = a_1x \oplus a_2x = 0$, then $(a_1a_1 + a_2a_2)x = 0$, whence x = 0. Assume now that $\delta_a^1(x_1 \oplus x_2) = a_1x_2 - a_2x_1 = 0$. If $y = a_1x_1 + a_2x_2$, then $a(a)(x_1 \oplus x_2) = y \oplus 0$; hence $x_1 \oplus x_2 = a(a)^{-1}(y \oplus 0)$, and thus on account of (2.3) we obtain

$$x_1 = a_1(a_1a_1 + a_2a_2)^{-1}y,$$

$$x_2 = a_2(a_1a_1 + a_2a_2)^{-1}y,$$

i.e. the exactness of (1.1) at the second step. Finally, if $y \in H$ is arbitrary, then $x_j = a_j(a_1a_1 + a_2a_2)^4y$ (j=1,2) satisfy the equation $a_1x_1 + a_2x_2 = y$, and the proof is complete.

Notice that $a = (a_1, a_2) \subset B(H)$ is nonsingular if and only if the matrix

$$\alpha(a^*) = \begin{pmatrix} a_1 & a^2 \\ -a_2^* & a_1^* \end{pmatrix}$$

Hae Gyung Lee

is invertible on $H \oplus H$, and also if and only if the matrix

$$\alpha(a)^{*} = \begin{pmatrix} a_1 & -a_2 \\ a_2 & a_1 \end{pmatrix}$$

is invertible on $H \oplus H$.

Corollary 2.3. If A is any commutative algebra of operators on H, then the map

$$A^2 \ni a \longrightarrow \alpha(a) \in B(H \oplus H)$$

is R-linear.

Proof. Since the maps δ_a^0 and δ_a^1 are linear on A^2 , $\alpha(a)$ is R-linear.

Remark. The set of matrices $\{\alpha(z) : z \in C^{2}\}$ can be identified with the algebra of quaternions and that the map $z \rightarrow \alpha(z)$ is an R-linear isometric isomorphism [10].

Corollary 2.4. For any $z = (z_1, z_2) \in C^2$, $z \neq 0$, $\alpha(z)^{-1}$ exists and $\alpha(z)^{-1} = (|z_1|^2 + |z_2|^2)^{-1} \alpha(z)$.

Proof. It is easy to see that $\sigma(z,H) = \{z\}$, hence $\alpha(z)$ is invertible for any $z \neq 0$. Then

 $\alpha(z)^{-1} = (|z_1|^2 + |z_2|^2)^{-1}\alpha(z).$

Corollary 2.5. For any $z \in C^2$, $z \neq 0$, we have

$$\|\alpha(z)\| = \|z\|$$
 and $\|\alpha(z)^{-1}\| = \|z\|^{-1}$

where $||z||^2 = |z_1|^2 + |z_2|^2$.

Corollary 2.6. If $a=(a_1, a_2)$ is nonsingular on H, then we have

the following commuting relations:

$$(2.4) \qquad a_{1}(a_{1}a_{1}+a_{2}a_{2})^{1}a_{1}+a_{2}(a_{1}a_{1}+a_{2}a_{2})^{1}a_{2}=1$$
$$a_{2}(a_{1}a_{1}+a_{2}a_{2})^{1}a_{2}+a_{1}(a_{1}a_{1}+a_{2}a_{2})^{1}a_{1}=1$$
$$a_{1}(a_{1}a_{1}+a_{2}a_{2})^{1}a_{2}+a_{2}(a_{1}a_{1}+a_{2}a_{2})^{1}a_{1}=0.$$

Formulas (2.4) can be obtained by using the fact that (2.3) provides also a left inverse for $\alpha(a)$.

3. Joint spectrum

Lemma 3.1. For a commuting pair of operators $a=(a_ka_k)\subset B(H)$, we have $\sigma(a,H)=C^2-\{z\in C^2; (z-a)^{-1}\in B(H\oplus H)\}$.

Corollary 3.2. If $a = (a_k a_2) \subset B(H)$ is a commuting pair, then $\alpha(a,H) = C^2 - \{z \in C^2 ; (\alpha(z) - \alpha(a))^1 \in B(H \oplus H)\}.$

Definition 3.3. The mapping

$$C^2 - \alpha(a,H) \ni z \longrightarrow R(z,a) = (\alpha(z) - \alpha(a))^1 \in B(H \oplus H)$$

is called the resolvent of a.

Lemma 3.4. For a commuting pair $a = (a_1, a_2) \subseteq B(H)$, the joint spectrum $\sigma(a, H)$ is a closed set and the resolvent R(z, a) is an R-analytic function in $C^2 = \sigma(a, H)$.

Proof. Fix a point $z_0 \notin \sigma(a,H)$. Since the map $z \to \alpha(z)$ is isometric, then for $z \in C^2$ such that $||z-z_0|| < ||\alpha(z_0-a)-1||^{-1}$, the series

$$\alpha(z_0-a)^{-1}\sum_{k=0}^{\infty}(-1)^k(\alpha(z-z_0)\alpha(z_0-a)^{-1})^k$$

is absolutely convergent and defines $(z-a)^{-1}$. In particular, the set $C^2 - \sigma(a,H)$ is open. Notice that $\alpha(z-z_0)$ is a polynomial of degree one in z_1 and z_k^* , where we get easily that $\alpha(z-a)^{-1}$ is R-analytic in $C^2 - \sigma(a,H)$.

Lemma 3.5. For a commuting pair $a=(a_1,a_2)\subset B(H)$ and any z in C^2 such that $||z|| > ||\alpha(a)||$, we have z is not in $\sigma(a,H)$ and

(3.1)
$$(\alpha(z) - \alpha(a))^{-1} = \sum_{k=0}^{\infty} (\alpha(z)^{-1} \alpha(a))^k \alpha(z)^{-1}$$

is absolutely and uniformly convergent on the sets $\{z \in C^2 ; \|z\| > r\}$ with $r > \|\alpha(a)\|$.

Proof. According to Corollary 2.5, we have that if $||z|| > ||\alpha(a)||$, then $||\alpha(a)^{1}\alpha(a)|| < 1$, hence the series (3.1) is absolutely convergent. It is straightforward to verify that (3.1) defines the inverse of $\alpha(a)$ - $\alpha(a)$. If $r > ||\alpha(a)||$, then for any z in C^{2} such that ||z|| > r we obtain by a direct estimation

$$\| (a(z) - a(a))^{-1} \| \leq r^{-1} (r - \| a(a) \|)^{-1},$$

hence the convergence of (3.1) is uniform.

Notice that $\lim_{|z|\to\infty} \|(\alpha(z)-\alpha(a))^{-1}\| = 0.$

Theorem 3.6. Let $a=(a_1,a_2) \subset B(H)$ be a pair of commuting operators. Then the joint spectrum $\sigma(a,H)$ of a is a compact nonempty set in C^2 .

Proof. On account of the Lemma 3.4 and Lemma 3.5, $\sigma(a,H)$ is a compact subset of C². Let us assume that $\sigma(a,H)$ is empty. Then by Theorem 2.2 the operator

$$((z_1-a_1)^*(z_1-a_1)+(z_2-a_2)^*(z_2-a_2))^{-1}$$

does exist, therefore the right ideal generated in B(H) by z-a is equal to B(H) for any $z=(z_1,z_2)\in C^2$ which is, according to [3], a contradiction.

4. Applications

Let *H* be a fixed Hilbert space. Let $a=(a_1,a_2)$ be a commuting pair of linear operators on *H* and let *K* be a closed subspace of *H*, *K* reducing *a*, i.e. $a_iK \subseteq K$, $a_jK \subseteq K$ for j=1,2. We denote by $a|\bar{K}$ the restrictions $(a_1|K, a_2|K)$.

Proposition 4.1. Assume that $a = (a_k a_2) \subset B(H)$ is nonsingular on H and K be a closed subspace of H, K reducing a. Then $a \mid K$ is nonsingular if and only if $\alpha(a)^{-1}(K \oplus K) \subset K \oplus K$.

Proof. We apply Theorem 2.2 If a|K is nonsingular, then $\alpha(a|K)^{-1} \in B(K \oplus K)$. Take $\eta \in K \oplus K$. We have

 $\alpha(a)(\alpha(a)^{-1}\eta - \alpha(a \mid K)^{-1}\eta) = 0,$

hence $\alpha(a)^{-1}\eta = \alpha(a|K)^{-1}\eta \subset K \oplus K$. Conversely, if $\alpha(a)^{-1}(K \oplus K) \subset K \oplus K$, then we have

 $\alpha(a)^{-1}|K = \alpha(a | K)^{-1},$

hence $a \mid K$ is nonsingular.

For any set $F \subseteq C^2$, let us denote by ∂F the boundary of F.

Proposition 4.2. Let K be a closed subspace of H, K reducing a. Then we have the relation

 $\mathfrak{s}\sigma(a,K) \subset \sigma(a,H).$

Proof. Let us choose a point $z_0 \in \sigma(a,K)$ and suppose that $z_0 \notin \sigma(a,H)$.

Hae Gyung Lee

Then there is a sequence $z_k \notin \sigma(a, K) \cup \sigma(a, H)$ such that $z_k \rightarrow z_0$ as $k \rightarrow \infty$. If $\eta \in K \oplus K$ is arbitrary, we can write

$$(\alpha(z_0)-\alpha(a))^{-1}\eta = \lim_{k\to\infty} (\alpha(z_k)-\alpha(a))^{-1}\eta \in K \oplus K,$$

therefore $a(z_0)-a(a)$ is nonsingular on K, which is a contradiction.

Corollary 4.3. If K_1 and K_2 are closed subspaces, reducing a, such that $\sigma(a,K_1)\cap\sigma(a,K_2)=\phi$, then $K_1\cap K_2=0$,

Proof. Indeed, $K_1 \cap K_2$ is reducing *a*, therefore

$$\varphi\sigma(a,K_1\cap K_2)\subset\sigma(a,K_1)\cap\sigma(a,K_2)=\phi$$

hence

$$\sigma(a,K_1 \cap K_2) = \phi$$
, thus $K_1 \cap K_2 = 0$.

References

- 1. R. Arens and A.P. Calderon, Analytic function of several Banach algebra elements, Ann. of Math., 62(1955), 204-216.
- A. Brown and C. Pearcy, Spectra of tensor product of operators, Proc. Amer. Math. Soc., 17(1966), 162-166.
- J. Bunce, The joint spectrum of commuting non-normal operators, Proc. Amer. Math. Soc., 29(1971), 499-505.
- Z. Ceausescu and F.H. Vasilescu. Tensor products and Taylor's joint spectrum, Studia Math., 62(1978), 305-311.
- M. Cho and M. Takaguchi, Identity of Taylor's joint spectrum and Dash's joint spectrum, Studia Math., 70(1982), 225-229.
- 6. A.T. Dash, Joint spectra, Studia Math., 45(1973), 225-237.
- M. Schechter, On the spectra of operators on tensor products, J. Functional Analysis, 4(1969), 95-99.
- 8. J.L. Taylor, A joint spectrum for several commuting operators, J. Functional

A Pair of Commuting Operators on Hilbert Spaces

Analysis, 6(1970), 172-191.

- The analytic functional calculus for several commuting operators, Acra Math., 125(1970), 1-38.
- F.H. Vasilescu, A characterization of the joint spectrum in Hibert spaces, Rev. Roum. Math. Pure and Appl., 22(1977), 1003-1009.
- 11. _____, On pairs of commuting operators, Studia Math., 62(1977), 201-205.

Pusan National University Pusan 609 - 735 Korea