PETTIS DECOMPOSABLE OPERATORS AND THE BOURGAIN PROPERTY

Sung Jin Cho

1. Introduction

In 1988, E.M. Bator [2] introduced a decomposition of bounded scalarly measurable functions taking their ranges in dual of a Banach space into a Pettis integrable part and weak* null part. And she extended Musial's result ([9], Theorem 5.3) to the case X not necessarily separable by a suitable weakening of the conclusion.

Using Bator's idea, we obtain Odell's characterization.

In 1982, L.H. Riddle [10] proved the following theorem :

Theorem : Let (Ω, Σ, μ) be a separable measure space. If $S : L_1(\mu) \rightarrow X^*$ be a bounded linear operator with the Bourgain property, then S is Pettis representable. And he asked whether the converse is true.

In this paper we define a new bounded linear operator on $L_1[0,1]$ which is called a Pettis decomposable operator and our main theorem gives a partial answer to the above question.

2. Preliminaries

Definition 2.1. A finite measure space (Ω, Σ, μ) is perfect if for each measurable map $f: \Omega \rightarrow R$ and each set $F \subseteq R$ for which $f^{-1}(F) \in \Sigma$, there is a Borel set $G \subseteq F$ with $\mu f^{c_1}(G) = \mu f^{c_1}(F)$.

Definition 2.2. A subset B of a Banach space X is called weakly precompact if every bounded sequence in B has a weakly Cauchy subsequence.

Received October 30,1989

Sung Jin Cho

Definition 2.3. Let $f: \Omega \to X^*$ be a weak^{*} measurable function. f is said to have the RS-property if the Radon image measure $v = \mu \circ f^*$ is such that for every n there is a Pettis set K_n such that $v(\Omega \setminus K_n) \leq \frac{1}{2n}$.

Talagrand [12] showed that if f is weak* scalarly bounded, then f has the RS-property if and only if for every $\varepsilon > 0$ there exists $E \in \Sigma$ with $\mu(\Omega \setminus E) < \varepsilon$ such that the set $\{\langle f, x \rangle \chi_E : ||x|| \leq 1\}$ is weakly precompact.

Definition 2.4. Let (Ω, Σ, μ) be a finite measure space. A family ψ of real-valued functions on Ω is said to have the Bourgain property if the following condition is satisfied: for each set A positive measure and for each $\alpha > 0$, there is a finite collection F of subsets of A of positive measure such that for each function f in ψ , the inequality sup f(B)-inf f(B) $<\alpha$ holds for some member B of F.

The next theorem is due to Bourgain [5].

Theorem 2.5. If (Ω, Σ, μ) is a finite measure space and ψ is a family of real-valued functions on Ω satisfying the Bourgain property, then

(i) the pointwise closure of ψ satisfies the Bourgain property,

(ii) each element in the pointwise closure of ψ is measurable, and

(iii) each element in the pointwise closure of ψ is the almost everywhere pointwise limit of a sequence from ψ .

It is worth remarking here that a uniformly bounded family ψ of real-valued functions has the Bourgain property if and only if the following condition holds:

For each non-null measurable set A in Σ and for each pair a < b of real numbers, there is a finite collection F of non-null measurable subsets of A such that for each f in ψ , either inf f(B) $\geq a$ or sup

 $f(B) \leq b$ for some member B of F.

We shall say that f has the Bourgain property if the family $\{\langle f, x \rangle$: $||x|| \leq 1$ has the Bourgain property.

Theorem 2.6. A bounded function $f: \Omega \rightarrow X^*$ that has the Bourgain property is Pettis integrable.

The following theorem is due to Bator [1].

Theorem 2.7. Let X be a Banach space and (Ω, Σ, μ) a finite measure space. Suppose $f: \Omega \to X^*$ is bounded and weakly measurable. Then f is Pettis integrable if and only if, for every $x^{**} \in X^{**}$, there exists a bounded sequence $(x_n)_{n=1}^{\infty}$ in X such that both of the following hold:

(i) $\hat{x}_n \circ f$ converse a.e. to $x^{**} \circ f$, (ii) $\hat{x}_n((w^*)-\int_{\mathbb{R}}f d\mu)$ converges to $x^{**}((w^*)-\int_{\mathbb{R}}f d\mu)$ for every $E \in \Sigma$.

3. Pettis decomposition and the weak Radon-Nikodym property

Rosenthal gave E. Odell's characterization of those spaces X not containing ℓ_1 : The Banach space X fails to contain an isomorphic copy ℓ_1 if and only if every Dunford-Pettis operator $T: X \rightarrow Y$ is compact for every space Y.

In this section, combining Lemma 3.4 and Corollary 3.6, we obtain Odell's characterization.

Definition 3.1. Let X be a Banach space and (Ω, Σ, μ) be a finite measure space and $f: \Omega \rightarrow X^*$ be bounded scalarly measurable. f is called Pettis decomposable if there exists a Pettis integrable function g and a weak*-null function h such that f=g+h.

The following Proposition is in [2].

Proposition 3.2. Let X be a Banach space and (Ω, Σ, μ) be a finite measure space. If f is a bounded and scalarly measurable then the following are equivalent:

(i) There exists a μ -Pettis integrable function g and a μ -weak^{*} null function h such that f=g+h.

(ii) There exists a μ -Pettis integrable function g such that for every $x^{**} \in X^{**}$, $T_f^{**}(x^{**}) = x^{**} \circ g$ in $L_i(\mu)$.

(iii) For every $\varepsilon > 0$, there exists $A \in \Sigma$ and a Pettis integrable function g such that $\mu(\Omega \setminus A) < \varepsilon$ and $(x \circ f)\chi_A = x \circ g \ a.e.-[\mu]$ for every $x \in X$.

The following Corollary is obvious.

Corollary 3.3. Let X be a separable Banach space and (Ω, Σ, μ) be a finite measure space. If $f: \Omega \rightarrow X^*$ be a bounded scalarly measurable, the following are equivalent:

(i) f is Pettis integrable,

(ii) f is Pettis decomposable.

Lemma 3.4. Let (Ω, Σ, μ) be a perfect measure space and $f: \Omega \rightarrow X^*$ be a bounded weak* scalarly measurable function. If f=g+h, where g is scalarly measurable and h is weak* null, then the operator $T_t: X \rightarrow L_1(\mu)$, defined by $T_t(x) = x \circ f$ for every $x \in X$, is compact.

Proof. Since h is weak* null, $T_i(x) = T_g(x)$ in $L_1(\mu)$ for every $x \in X$. However, since g is scalarly measurable, the operator T_g is compact by Proposition 3 of [1].

The following theorem is the main theorem of [2] which is the extension of Musial's result [9].

Theorem 3.5. If X is a Banach space, then the following are equivalent:

(i) X does not contain an isomorphic copy of ℓ_1 .

(ii) X* has the WRNP.

(iii) If (Ω, Σ, μ) is a complete measure space and $f \colon \Omega \to X^*$ is bounded and weak^{*} scalarly measurable, then f is Pettis decomposable.

(iv) If (Ω, Σ, μ) is a complete measure space and $f: \Omega \rightarrow X^*$ is bounded weak* scalarly measurable, then f=g+h, where g is scalarly measurable and h is weak* null.

As a corollary of the above theorem, we obtain the following result.

Corollary 3.6. If X is a Banach space, then the following statements concerning X are equivalent:

(i) X^* has the WRNP.

(ii) Given any complete measure space (Ω, Σ, μ) and any bounded weak* scalarly measurable function $f: \Omega \rightarrow X^*$, f is weak* equivalent to a scalarly measurable function.

(iii) Given any bounded weak* scalarly measurable function $f:[0,1] \rightarrow X^*$ on the unit interval endowed with the Lebesgue measurable sets and the Lebesgue measure, f is weak* equivalent to a scalarly measurable function.

(iv) Given any complete measure space (Ω, Σ, μ) and any bounded weak^{*} scalarly measurable function $f: \Omega \rightarrow X^*$, f is weak^{*} equivalent to a Pettis integrable function.

(v) Given any bounded weak* scalarly measurable function $f: [0,1] \rightarrow X^*$ with the unit interval endowed with the Lebesgue measurable sets and the Lebesgue measure, f is weak* equivalent to a Pettis integrable function.

(vi) X does not contain any isomorphic copy of ℓ_1 .

Proof. Using the same arguments as in the proof of Theorem 3.5, we see that the implications $(iv) \rightarrow (ii) \rightarrow (iii)$ and $(iv) \rightarrow (i) \rightarrow (iv) \rightarrow (v) \rightarrow (iii)$ hold. Janika proved the equivalence of (1) and (vi) in [8]. We have only left to show (iii) implies (vi). If X contains ℓ_1 , then there exists a bounded weak* Lebesgue measurable function f: [0,1]

Sung Jin Cho

 $\rightarrow X^*$ such that the operator $T_t: X \rightarrow L_1[0,1]$ is not compact[4]. Let $f: [0,1] \rightarrow X^*$ be weak* equivalent to g which is scalarly measurable. Then clearly $x \circ f = x \circ g$ for every $x \in X$. Thus $T_t(x) = T_t(x)$ in $L_1(\mu)$ for every $x \in X$ and T_t is compact by Proposition 3 of [1]. This completes the proof.

Now, we obtain Odell's characterization.

Theorem 3.7. If X is a Banach space, then the following are equivalent:

(i) X does not contain an isomorphic copy of ℓ_1 .

(ii) Every Dunford-Pettis operator $T: X \rightarrow Y$ is compact for every space Y.

Proof. (i) \rightarrow (ii): Suppose that X does not contain a copy of ℓ_1 , $T: X \rightarrow Y$ is D-P, and (x_n) is a bounded sequence. Then (x_n) has a weakly Cauchy subsequence, say $(x_{n_1})_{n=1}^{\infty}$ Consequently $(T(x_{n_1}))$ is norm convergent, and hence T is compact.

(ii) \rightarrow (i): Suppose that X contains an isomorphic copy of ℓ_1 . Then by Corollary 3.6 and Lemma 3.4, there exists a bounded weak*-Lebesgue measurable function $f: [0,1] \rightarrow X^*$ such that $T_1: X \rightarrow L_1[0,1]$ is not compact. Let(π_n) be a sequence of the dyadic partitions of [0,1] and Σ_n denotes the σ -algebra generated by π_n . Define an X*-valued martingale $\langle f_n, \Sigma_n \rangle$ by

$$f_{\mathfrak{n}} = \sum_{A \in \pi_{\mathfrak{n}}} \frac{(\mathbf{w}^{*}) - \int_{A} f d\mu}{\mu(A)} \chi_{A}.$$

Then $(\langle f_n, x \rangle, \Sigma_n)$ is a uniformly bounded martingale with $\lim_n \langle f_n, x \rangle = \langle f, x \rangle$ a.e. and hence in $L_1[0,1]$. Hence by Bounded Convergence Theorem T_f is a D-P operator and completes the proof.

4. Pettis decomposable operators and the Bourgain property

In this section, using Bator's idea, we define a bounded linear operator $S: L_1[0,1] \rightarrow X^*$ which is called a Pettis decomposable operator. The symbol $L_1[0,1]$ represents the space $L_1([0,1],\Sigma,\mu)$ where Σ is the σ -algebra of Lebesgue measurable subsets of [0,1] and μ is the Lebesgue measure.

Let (π_n) be a sequence of the dyadic partitions of [0,1] and Σ_n denotes the σ -algebra generated by π_n . Let $S : L_1[0,1] \to X^*$ be a bounded linear operator. For each $n \in \mathbb{N}$ define a function $f_n : [0,1] \to X^*$ by

 $f_{n} = \sum_{A \in \pi_{n}} \frac{S(\chi_{A})}{\mu(A)} \chi_{A}.$

Then the sequence (f_n, Σ_n) forms a uniformly bounded X*-valued martingale. We shall say that the sequence (f_n, Σ_n) is the associated martingale with S.

Definition 4.1. Let $S: L_1[0,1] \to X^*$ be a bounded linear operator with the associated martingale (f_n, Σ_n) . The operator S has the Bourgain property if the family $\{\langle f_n, x \rangle : n \in N, ||x|| \le 1\}$ has the Bourgain property.

Definition 4.2. Let $S: L_1[0,1] \to X^*$ be a bounded linear operator with the associated martingale (f_n) . The operator S is called Pettis decomposable if there exists a pointwise weak*-cluster point $f: [0,1] \to X^*$ of $\{\langle f_n x \rangle : n \in N, ||x|| \le 1\}$ such that f is Pettis decomposable.

Theorem 4.3. An operator $S : L_1[0,1] \rightarrow X^*$ with the Bourgain property is Pettis decomposable.

Proof. Let (f_0) be the uniformly bounded X*-valued martingale associated with S. Choose a pointwise weak*-cluster point $f: [0,1] \rightarrow X^*$

of (f_n) . Let $x \in B_x$. Then $\lim \langle f_n, x \rangle = \langle f, x \rangle$ a.e., By the Bounded Convergence Theorem

$$S(g)x = \{\langle f, x \rangle g \ d\mu \ for \ all \ g \in L_1[0,1].$$

Since $\{\langle f, x \rangle : ||x|| \leq 1\}$ lies in the pointwise closure of $\{\langle f_n x \rangle : n \in N, ||x|| \leq 1\}$, f has the Bourgain property. So f is Pettis integrable by Theorem 2.6. Clearly f is scalarly measurable and bounded. Hence f is Pettis decomposable and therefore S is Pettis decomposable.

In [2], Bator proved the following theorem:

Theorem 4.4. Let (Ω, Σ, μ) be a finite measure space and X a Banach space. If $f: \Omega \rightarrow X^*$ is a bounded scalarly measurable function such that f has the RS-property, then f is Pettis decomposable.

Theorem 4.5. Let $S: L_1[0,1] \rightarrow X^*$ be a bounded linear operator with the associated martingale (f_n) and f be a pointwise weak*-cluster point of (f_n) . If f be a scalarly measurable function having the RSproperty, then S is Pettis decomposable.

Proof. If f has the RS-property, then there exists a Pettis integrable function $g: [0,1] \rightarrow X^*$ such that $x \circ f = x \circ g$ in $L_1[0,1]$ for all $x \in B_x[12]$. Thus by Proposition 3.2, f is Pettis decomposable. Hence S is Pettis decomposable.

Theorem 4.6. Let $S: L_1[0,1] \rightarrow X^*$ be a Pettis decomposable operator and X a separable Banach space. Then S is Pettis representable.

Proof. Let $S: L_1[0,1] \to X^*$ be a bounded linear operator with the associated martingale (f_n) . Since S is Pettis decomposable, there exists a pointwise weak*-cluster point $f: [0,1] \to X^*$ such that f is a Pettis decomposable. Let $x \in B_x$. Then $S(g)x = \int \langle f, x \rangle g \, d\mu$ for all $g \in L_1[0,1]$. Since X is separable, f is Pettis integrable.

Let $x^{**} \in X^{**}$. Then by Theorem 2.7 and the Bounded Convergence Theorem,

$$\langle x^{**}, S(g) \rangle = \lim_{n} \langle x_{n}, S(g) \rangle = \lim_{n} \langle f, x_{n} \rangle g \ d\mu$$
$$= \int \langle f, \ \lim_{n} x_{n} \rangle d\mu = \int \langle x^{**}, f \rangle g \ d\mu$$

Thus f is a Pettis derivative of S and hence S is Pettis representable.

The following Lemma is in [5].

Lemma 4.7 (Bourgain) Suppose A is a subset of [0,1] with positive measure and $0 < \alpha < 1$. Then there is an integer m and a measurable subset $B \subseteq A$ with $\mu(B) > (1-\alpha)\mu(A)$ such that for every uniformly bounded by 1 real-valued martingale (g_{α}, Σ_n) and for every $n \ge m$,

(i) ess inf $g(A) \leq \log g_n(B) + \alpha$

(ii) ess sup $g(A) \ge \sup g_{\alpha}(B) - \alpha$

where g is any almost everywhere limit of the sequence (g_n) .

The following Lemma is need to our main theorem in this section.

Lemma 4.8. Let $S: L_1[0,1] \rightarrow X^*$ be a bounded linear operator with the associated martingale (f_n) and $f: [0,1] \rightarrow X^*$ be a pointwise weak*-cluster point of (f_n) .

If f has the Bourgain property, then S has the Bourgain property.

Proof. Without loss of generality, we may assume that $||S|| \leq 1$ Suppose that the family $\{\langle f, x \rangle : ||x|| \leq 1\}$ has the Bourgain property. Let A be a set of positive measure and $a \langle b$, Choose $a \rangle 0$ such that $a + \alpha < b - \alpha$. There exists A_1, \ldots, A_k of with positive measures such that for each $x \in B_x$, either sup $\langle f, x \rangle \leq b - \alpha$ or inf $\langle f, x \rangle \geq a + \alpha$ for some i. Since $\lim_{n} \langle f_{n}, x \rangle = \langle f, x \rangle^{A_n}$ a.e., according to Lemma 4.7, there exists, for each set A_n an integer m, and a non-null subset of B_n of Sung Jin Cho

A, such that

(i) ess $\inf_{A} \langle f, x \rangle \leq \inf_{B} \langle f_{n}, x \rangle + \alpha$

(ii) ess $\sup_{A_i} \langle f_x \rangle \leq \sup_{B_i} \langle f_n, x \rangle$ - α for each $x \in B_x$ and for every $n \geq m_i$. Let $m = max\{m_i : 1 \leq i < k\}$. Let $n \geq m$, let $x \in B_x$, and note that there

Let $m - max_{m_i}$, $i \ge i < k$. Let $n \ge m$, let $x \in B_x$, and note that the exists an A_i such that either

$$b - \alpha \ge \sup_{A_n} \langle f, x \rangle \le ess \sup_{A} \langle f, x \rangle \le \sup_{B_n} \langle f_n, x \rangle - \alpha$$

or

$$a + \alpha \leq \inf_{A_i} \langle f_i x \rangle \leq ess \quad \inf_{A_i} \langle f_i x \rangle \leq \inf_{B_i} \langle f_{it} x \rangle - \alpha$$

That is, either $b \ge \sup_{B_1} \langle f_n, x \rangle$ or $a \le \inf_{B_1} \langle f_n, x \rangle$. Therefore the sets B_1, \ldots, B_k will work for the set A for the family $\{\langle f_n, x \rangle : n \ge m, || x || \le 1\}$. However the f_1, \ldots, f_{m-1} are just simple, so that for each $i=1, \ldots, m-1$ there exists a set C₁ on which f_i is constant and $\mu(A \cap C_i) > 0$. Thus the sets $B_1, \ldots, B_k C_1 \cap A, \ldots, C_{m-1} \cap A$ will work for the set A for the family $\{\langle f_n, x \rangle : n \in N, || x || \le 1\}$. Thus S has the Bourgain property.

Theorem 4.9. Let $S: L_1[0,1] \rightarrow X^*$ be a Pettis decomposable operator with the associated martingale (f_n) and with a Pettis decomposable function $f: [0,1] \rightarrow X^*$. If f=g+h, where g has the Bourgain property and h is weak*-null, then S has the Bourgain property.

Proof. Let $f: [0,1] \to X^*$ be a pointwise weak*-cluster point of (f_n) and f=g+h, where g has the Bourgain property and h is weak*-unll. Let $x \in B_x$. Then $\langle f, x \rangle$ is a pointwise cluster point of the sequence $(\langle f_n, x \rangle)$. We must show that $\{\langle f_n, x \rangle : n \in N, ||x|| \le 1\}$ has the Bourgain property. Suppose that $\{\langle f_n, x \rangle : n \in N, ||x|| \le 1\}$ fails the Bourgain property. Then by Theorem 4.8 f does not have the Bourgain property. However since f-g is weak*-null, g does not have the Bourgain

PETTIS DECOMPOSABLE OPERATORS AND THE BOURGAIN PROPERTY

property. This is a contradiction and completes the proof.

References

- 1. E.M.Bator, The Pettis Integral and the equality of the norms of the Dunford integral and the weak* integral, Proc. Amer. Math. Soc. 95(1985), 265-270.
- A decomposition of bounded scalarly measurable functions taking their ranges in dual Banach spaces, Proc. Amer. Math. Soc. 102(1988), 850-854.
- Pettis decomposition for universally scalarly measurable functions, Proc. Amer. Math. Soc. 104(1988), 795-800.
- E.M. Bator, P.W. Lewis, and D.Race, Some connections between Pettis integration and operator theory, Rocky Mountain Math. 17(1987), 683-695.
- 5. J.Bourgain, Martingales in conjugate Banach spaces (preprint).
- J.Diestel and J.J.Uhl, Jr., Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977.
- N.Dunford and J.T. Schwartz, Linear operators Part I, Interscience, New York, 1958.
- LJanika, Some measure-theoretic characterizations of Banach spaces not containing ℓ_i, Bull. Acad. Polon. Sci. 27(1979), 561-565.
- K.Musial, The weak Radon-Nikodym property in Banach spaces, Studia Math. 641(1978), 151-174.
- L.H.Riddle, Weak Radon-Nikodym sets in dual Banach spaces, PH.D. Thesis, University of Illinois, 1982.
- H.P. Rosenthal, A characterization of Banach spaces containing l₁, Proc. Nat. Acad. Sci. U.S.A. 71(1974), 2411-2413.
- M.Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc., No. 307(1984).

Pusan National Institute of Technology, Pusan, Korea