Star Complex in Inifinite Group*

Young Gheel Baik

1. Introduction

Given a 2 -complex, we can get a l-complex which has variously been called the co-initial graph, star-graph, star complx, and which has proved useful in several contexts (1), (2), $\{3),(6),\{8\}$. Hyperbolic complexes arise when one considers assigning numbers(weights) to the edges of star-complex of a 2 -complex.

In(7), Pride introduced the concept of an involutary presentation. Such presentations are useful when one wants to deal geometrically with groups which have generators of order 2 .

In this paper, we will study the problem; when is 2 -cyclically presented group finite or infinite?
The main tool we will make use of is the star complexes of involutary presentations.

By using covering theorem[9], we get involutary presentations from 2-cyclically presented groups. And then we get hyperbolic presentations from those by assigning weights.

2. Definitions and notations

A 1-complex X consists of two disjoint sets $V=V(X)$ (vertices), $E=E(X)$ (edges) and three functions;

$$
{ }_{L}: E \rightarrow X, \quad{ }_{\tau}: E \rightarrow X, \quad{ }^{1}: E \rightarrow E
$$

[^0]satisfying ; ${ }_{L}(e){ }_{T}\left(e^{-t}\right),\left(e^{-1}\right)^{-1}=e$ for all $e \in E$
If $e^{-1}=e$ then we will say that e is. an involutary edge. A non-empty path α in X is a sequence $e_{1} e_{z} \cdots e_{n}(n \geq 1)$ of edges with $r_{r}\left(e_{1}\right)==_{1}$ $\left(e_{i}+1\right)(1 \leq i<n)$. We define $L_{L}(\alpha), \tau(\alpha)$ to be $L_{L}\left(e_{l}\right),{ }_{T}\left(e_{n}\right)$. The length $L(\alpha)$ of α is n. The inverse α^{-1} of α is the path $e_{n}^{-1} \cdots e_{2}^{-1} e_{1}^{-I}$
The path α is said to be closed if ${ }_{L}(\alpha)=_{T}(\alpha)$. We say that α is reduced if $e_{i} \neq e_{t+1}^{-2}$ for $i=1, \cdots, n-1$.
Moreover it is said to be cyclically reduced if all its cyclic permutations are reduced.

A 2-complex K is an $\operatorname{object}\left\langle X ; \rho_{\lambda}(\lambda \in \Lambda)\right\rangle$ where X is a 1 -complex and ρ_{λ} are non-empty closed paths in X (called defining paths). We will assume that the defining paths are non-empty and cyclically reduced. A 2 -complex with a single vertex is a presentation. A presentation may have involutary edges. Such presentation ia called an irrwotutary presentation.
We let $R(K)$ denote the set of cyclic permutations of defining paths of K and their inverses.

The star-complex K^{3} of a 2 -complex K is the 1 -complex with vertex set $E(K)$, adge set $R(K)$, and functions

$$
\begin{aligned}
& L^{t}: R(K) \rightarrow E(K), \tau^{t}: R(K) \rightarrow E(K) . \\
&-1^{*}: R(K) \rightarrow R(K)
\end{aligned}
$$

given by

$$
\begin{aligned}
& L^{x^{\prime}(r)}=\text { first edge of } r \\
& \tau^{\prime}(r)=\text { inverse of last edge of } r \\
& r^{-i t}=r^{2}, r \in R(K) .
\end{aligned}
$$

A weight function on a l-complex is a mapping θ for the edge set to the real numbers such that $\theta(e)=\theta\left(e^{-r}\right)$ for each edge e. If $r=e_{1} e_{2} \cdots e_{n}$ is edge, then we define $\theta(r)=\Sigma_{i=1}^{n} \theta\left(e_{1}\right)$ The interesting situation to us is that when we have a presentation K together with a weight function θ defined on $K^{3 t}$.

We denote this situation by (K, θ). We call (K, θ) hyperbolic if the following holds.
(1) For any element $e_{1} \cdots e_{n} \in R$,

$$
\sum_{i=1}^{n}\left(1-\theta\left(e_{e_{1}+i} \cdots e_{n} e_{1} \cdots e_{i-1}\right)\right)>2 .
$$

(2) The weight of every non-empty cyclically reduced closed path in K^{x} is at least 2.
(3) There is a non-negative real number N such that every reduced path in K^{4} has weight at least- N.
We call (1) and (2) Link condition and Curvature condition. These conditions have clear geometric meanings (2),(6).
We say that a presentation K is hyperbolic if (K, θ) is hyperbolic for some $\hat{\theta}$.

3. Cyclically presented groups

Let $F=\left\langle x_{3}, x_{2}, \cdots, x_{n} \mid\right\rangle$ and θ be the automorphism of F induced by permuting the subscripts of the free generators in accordance with thd cycle $(12 \cdots n) \in S_{n}$. For any reduced word $w \in F$, the cyclically presented group $G_{n}(w)$ is given by
$G_{s}(w)=\left\langle x_{i x} x_{2}, \cdots, x_{n} \mid w, w \theta, \cdots, w \theta^{-n}\right\rangle$
Cyclically presented groups comprise a potentially rich source of interesting groups. For example (4),(8), Macdonald groups, Mennicke groups, Fibonacci groups and Higman groups. Since cyclically presented groups have non-negative deficiency, $G_{n}(w)$ is interesting if and only if it. is finite.
To link with one relator products of two cyclic groups, we work only the case $n=2$.
Consider such a group

$$
H=\left\langle x_{1}, x_{2} ; R\left(x_{1}, x_{2}\right)=1, \quad R\left(x_{2} x_{1}\right)=1\right\rangle
$$

There is an automorphism ϕ of H which interchanges, x_{1} and x_{2}. Thus we can extend H by this automorphism giving the group [5]

$$
\begin{aligned}
& H^{*}=\left\langle x_{1}, x_{2} t ; t^{2}=1, t^{-1} x_{t} t=x_{2} R\left(x_{b} x_{2}\right)=1, R\left(x_{2}, x_{1}\right)=1\right\rangle \\
& =\left\langle x_{1}, t ; t^{2}=1, \quad R\left(x_{2} t^{2} x_{1} t\right)=1\right\rangle
\end{aligned}
$$

Then $\left|H^{*} ; H\right|=2$, so H is infinite if and only if H^{*} is infinite. Thus to deal with the problem "when is a 2-generator cyclically presented group infinite?" it suffices to look at groups with presentations of the form(changing notation)

$$
\left\langle a, b \mid a^{2}=1, a b^{n_{1}} a b^{n_{2}} \cdots a b^{n_{z}}=1\right\rangle
$$

Let $G=\left\langle a, b \mid a^{2}=1, a b^{n_{1}} a b^{n_{2}} \cdots a b^{n_{r}}=1\right\rangle, \quad n=n_{1}+\cdots n_{r}$.
Theorem 1. If $r \geq 7$ and n_{1}, \cdots, n_{r} are distinct then G is infinite.
Theorem 2. If $n_{1}=n_{2}=\cdots=n_{r}=\alpha$ and $r \geq 5$ then G is infinite.
We define a mapping $\theta: G \rightarrow Z_{\mathrm{x}}=\left\langle t \mid t^{\pi}=1\right\rangle$ by

$$
\begin{aligned}
& a \rightarrow 1 \\
& b \rightarrow b
\end{aligned}
$$

then we have an extension homomorphism θ of θ.
Let $\operatorname{Ker} \theta=N$ then $|G ; N|=n$ and N is generated by $a_{0} a_{1}, \cdots, a_{n-1}$ and b^{n}, where $a_{c}=b^{\prime} a b^{\prime}$.
Let $\vec{N}=N /\left\langle b^{n}\right\rangle$ then \vec{N} has the involutary presentation
$\vec{N}=\left\langle a_{0} a_{1}, \cdots, a_{n-1} \backslash a_{1}^{2}=1, a_{1} a_{i+n i} \cdots a_{1+n_{1}+\cdots+n_{r}}=1(\bmod \mathrm{n}) i=0, \cdots, n-1\right\rangle$.
So, if \bar{N} is hyperbolic then G is infinite.
Proof of Theorem 1. The star complex of \bar{N} has no closed path of length 2. That is to say, it is a graph. If we assign weight $2 / 3$
to the each edge, then \bar{N} is hyperbolic. Therefore, G is infinite.
Proof of Theorem 2. Each basic path of the involutary star complex of \bar{N} is αr-gon. So, we assign weight $2 / r$ to each edge then N is hyperbolic. Therefore, G is infinite.

Theorem 3. If $n=\alpha$ and $n_{2}=\cdots=n_{r}=1$ then $\frac{1}{a-1}+\frac{1}{r}\left\langle\frac{1}{2}\right.$ if and only if G is infinite.

Proof. Since $b^{(a-1)}=(b a)^{r}, b^{a \cdot 1}$ commutes with a. This is to say, b^{a-} ${ }^{1}$ belongs to the center of G. Therefore, $G /\left\langle b^{a-1}\right\rangle$ has the presentation

$$
\left\langle a, b \mid a^{2}=1, b^{\mathrm{a}-1}=1,(a b)^{r=1}\right\rangle
$$

and is a von Dyck's group $D(2, t-1, r)$. If $\left|G ;\left\langle b^{\sigma-1}\right\rangle\right|$ is finite then $|G ; Z(G)|$ is finite. Then by B.H. Neumann's Theorem(4] the derived group G^{\prime} of G is finite. Since $\left|G ; G^{\prime}\right|$ is finite, G is finite. So we have our conclusion.

References

1. E. Fennessey and S.J. Pride, Equivalences of two-complexes, with applications to NEC-groups, to appear.
2. Z.B. Gu, Hyperbohc surfaces and quadratic equations in groups, preprint.
3. P. Hill, S.J. Pride and A.D. Vella, On the $T(q)$-conditions of small cancellation theory, Israel J. Math. 52(1985), 293-304.
4. D.L. Johnson, Topics in the Theory of Group Presentations, Cambridge University Press, Cambridge, 1980.
5. R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Ergebn. Math. Grenzgebiete 89, Springer-Verlag, Berlin, 1977.
6. S.J. Pride, Star-complex, and the dependence Problems for hyperbolic
complexes, Glasgow Math. J. 30(1988) 155-170.
7. -_, Involutary presentations, with applications to Coxeter groups, NEC groups and groups of Kanevskii., to appear.
8. -_.-. Groups with presentations in which each defining relator involves exactly two generators, to apper.
9. H. Ziechang, E. Vogt and H.D. Coldewey, Surfaces and Planar Discontinuous Groups. LNM 835, Springer-Verlag, Berlin, 1980.

National Flsheries University of Pusan
Pusan 608-737,
Korea.

[^0]: * This research was supported by the Munistry of Education in Republic of Korea Recerved October 27,1989

