ON DUALITY THEOREMS FOR MULTIOBJECTIVE PROGRAMS

Do Sang Kim and Gue Myung Lee

Abstract

The efficiency (Pareto optimum) is a type of solutions for multiobjective programs. We formulate duality relations for multiobjective nonlinear programs by using the concept of effciency. The results are the weak and strong duality relations for a vector-dual of the Wolfe type involving invex functions.

1. Introduction and Preliminaries

In 1989, Egudo [2] formulated the duality relations for the convex and ρ -convex functions. The purpose of this paper is to establish duality relations between the multiobjective nonlinear program

(MOP) Minimize f(x)subject to $x \in X = \{x \in R^* : g(x) \leq 0\};$

and the Wolfe vector dual multiobjective program [5]

(WVD) $\begin{array}{c} \text{maximize } f(u) + y^{t}g(u)e \\ \text{subject to } (u, \gamma, y) \in Y, \text{ where} \end{array}$

 $Y = \{(u, \gamma, y) ; \nabla \gamma f(u) + \nabla y g(u) = 0, y \ge 0, \gamma > 0 \text{ and } \gamma e = 1\} \text{ and } e^{-1}(1, \dots, 1)$ $Y \in \mathbb{R}^{p}.$ The functions $f: \mathbb{R}^n \to \mathbb{R}^p$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ are assumed to be differentiable.

We give the following conventions for vectors in R^* ;

x < y if and only if $x_i < y_i$, i = 1, 2, ..., n, $x \le y$ if and only if $x_i \le y_i$, i = 1, 2, ..., n, x < y if and only if $x \le y$ and $x \ne y$, $x \not\le y$ is the negation of $x \le y$.

Hanson [3] introduced the following invex function.

Definition 1. Let $h(x) = (h_i(x), ..., h_p(x))^i$; $\mathbb{R}^n \to \mathbb{R}^n$ be a differentiable function. Then h is invex with respect to η if for all i=1,2,...,p, there exists a vector valued function η defined on $\mathbb{R}^n \times \mathbb{R}^n$ such that for all $x, u \in \mathbb{R}^n$,

 $h_i(x) = h_i(u) \ge \nabla h_i(u) \eta(x, u).$

We introduce the concept of efficiency(Pareto optimum).

Definition 2. $\overline{x} \in X$ is an efficient solution for (MOP) if for all $x \in X$,

 $f(x) \not\leq f(\bar{x}).$

And $(\bar{u}, \bar{\gamma}, \bar{y}) \in Y$ is an efficient solution for (WVD) if for all $(u, \gamma, y) \in Y$,

$$f(\overline{u}) + \overline{y}'g(\overline{u})e \leq f(u) + y'g(u)e.$$

The proof of a strong duality relation will use the following lemma.

Lemma 3 [1]. \overline{x} is an efficient solution for (MOP) if and only if for all k=1, 2, ..., p, \overline{x} solves (P_k), where (P_k); Minimize $f_k(x)$ subject to $x \in X_k = \{x \in \mathbb{R}^n : f_k(x) \leq f_k(\overline{x}) \text{ for all } j \neq k, g(x) \leq 0\}.$

210

2. Duality theorems

Here we establish the weak and strong duality theorems between (MOP) and (WVD). First we consider a weak duality relation when the functions are invex.

Theorem 4 (Weak duality). Assume that f and g are invex with respect to η . Then for all $x \in X$ and all $(u, \gamma, y) \in Y$,

$$f(x) \leq f(u) + y'g(u)e$$
.

Proof. Suppose that there exist $x \in X$ and $(u, \gamma, y) \in Y$ such that

Since $y'g(x)e \leq 0$, we have

$$f(x) + y'g(x)e \leq f(u) + y'g(u)e$$

This implies

$$\gamma f(x) + y'g(x) < \gamma f(u) + y'g(u).$$

Now hypothesis imply $\gamma' f(.) + \gamma' g(.)$ is invex with respect to η . Then we have

$$[\nabla \gamma' f(u) + \nabla y' g(u)] \eta(x, u) < 0.$$

This is a contradiction.

Now we give the Kuhn-Tucker necessary theorem for the singleobjective(i.e.,scalar) program to obtain a strong duality theorem. **Lemma 5**[4]. Let $\Theta: \mathbb{R}^n \to \mathbb{R}$ and g be differentiable functions. Suppose that \overline{x} solves (P): Minimize $\Theta(x)$ subject to $g(x) \leq 0$. Assume that \overline{x} satisfies the Slater's constraint qualification (i.e., there exists an $\overline{x} \in X$ such that $g(\overline{x}) < 0$). Then there exists $\overline{y} \in \mathbb{R}^m$ such that

$$\nabla \Theta(\vec{x}) + \nabla \vec{y}'_g(\vec{x}) = 0, \quad \vec{y}'_g(\vec{x}) = 0 \quad \text{and} \quad \vec{y} \ge 0.$$

Finally we have a strong duality theorem when the functions are invex.

Theorem 6 (Strong duality). Suppose that f and g are invex with respect to η . Let \overline{x} be an efficient solution for (MOP) and assume that \overline{x} satisfies the Slater's constraint qualificatin for $(P_k) k=1, 2, ..., p$. Then there exist $\overline{\gamma} \in \mathbb{R}^k$ and $\overline{y} \in \mathbb{R}^m$ such that $(\overline{x}, \overline{\gamma}, \overline{y})$ is an efficient solution for (WVD) and $\overline{y}'_g(\overline{x}) = 0$.

Proof. Since \bar{x} is efficient for (MOP), from Lemma 3, \bar{x} solves (P_k) for all k=1, 2, ..., p. Now from Lemma 5, there exist $\bar{\gamma} > 0$ and $\bar{y} \ge 0$ such that

$$\nabla \vec{\gamma} f(\vec{x}) + \nabla \vec{y} g(\vec{x}) = 0, \quad \vec{y} g(\vec{x}) = 0 \text{ and } \quad \vec{\gamma} e = 1.$$

Thus $(x, \gamma, y) \in Y$. By the weak duality, for all $(x, \gamma, y) \in Y$,

$$f(\vec{x}) \not\leq f(x) + y'g(x)e.$$

Since $\vec{y}g(\vec{x})=0$, we have

$$f(\overline{x}) + \overline{y}'g(\overline{x})e \not\leq f(x) + y'g(x)e.$$

Hence $(\bar{x}, \bar{y}, \bar{y})$ is an efficient solution for (WVD).

212

ON DUALITY THEOREMS FOR MULTIOBJECTIVE PROGRAMS

In a subsequent paper, we will study the duality relations between (MOP) and the Mond-Weir vector dual program.

References

- 1. V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory and Methodology, North-Holland, New York, 1983.
- R. R. Egudo, Efficiency and generalized convex duality for multiobjective programs, J. Math. Aanl. Appl., 138(1989), 84-94.
- M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80(1981), 545-550.
- 4. O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.
- 5. P. Wolfe, A duality theorem for nonlinear programming. Quart. Appl. Math., 19(1961), 239-244.

National Fisheries University of Pusan Pusan 608-737, Korea. and Pusan National Institute of Technology Pusan 608-739, Korea.