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Abian's Order in Near-Rings and Direct 
Product of Near-Fields

Lee, Dong Su* and Ryu, Dong Neun**

Abstract

It 伍应 a Bearing N which 屉 no noi^ero iriipotent
elements is a partially ordered set where 虹y if and only if j次=$.

Also it is shown that (N,<) is infinitely distributive for central 
elements that is r(supx^~sup(rx^) for every central element r of N 
and any subset ｛的｝ of N. By using some lemmas we showed that 
a near-ring without nilpotent elements is isomorphic to a direct product 
of near-fields if and only if N is hyperatomic and orthogonally complete 
under the condition that every idempotent of N is central.

1. Introduction

In 1970 Alexander Abian introduced an order relation in a semisimple 
commutative ring. This relation <is defined by x<y iff 打=廿.

By using that relation he showed that a commutative semisimple 
ring R is isomorphic to a direct product of fields if and o이y if 
R is hyperatomic and orthogonally complete. To prove the above 
theorem is true he showed that relation is infinetly distributive that 
is r(supx^=sup(rx^) for every subset ｛xj of 7?(1).

M. Charcron extended Abian* s results to noncommutative rings.
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He showed that if R has no nilpotent elements in stead of semisimplecity 
in commutative case, the order relation defined by Abian is partially 
order. And he also showed that R is isomorphic to a direct product 
of division rings if and only if R is hyperatomic and orthogonally 
complete whose meanings are same to that of Abian9 s (4).

fLCMyung and L^Jimenez showed that Abian* s results are also 
true in alternating rings with additional conations that are xy=0 
iff yx=0 and xy—xi iff yx~tx for every 砌fER(5)

In this paper we studied Abian* s order in ner-rings and obtained 
sim교ar results to other cases studied by above some matematicians.

Recall that (Nf+, •) is called a near・riii용 if the following conditions 
are satisfied

(a) (N,+ ) is a group (not necessarily abelian)
御(X *7 is a ^emigronp.
(c) For every x,y,xEN i (x^-y) • z=xz^-yzf that is ri흥ht distributive 

law is satisfied.
Since near-ring structure does not satisfy left distributive law n • 0 

may be not 0 where 0 is the identity for addition. But throughout 
this paper, we assume that n - 0=0 for VneN, that is the zera symmeric 
No= {neN I n • 0=P}=N. Its main examples are the set of functions 
on an additive group with addition and multiplication defined by 
following ；

(a) addition + : (f^~g)(x) =f(x)+g(x) for every x in a group.
(b) multiplication : (f * g)^f(g(x)) that is multiplication is composition 

of functions.
Multiplication will in most cases be indicated by juxtaposition : so 

we write nin2 instead of m •

2. Mian Results

Since left distributive law is not satisfied in near-rings we need 
the following remark.

Remark. If a near-ring N has no non-zero nilpotent elements, 
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the followings are true.
(i) xy—0 if and only if yx=0 for every xryEN
(ii) xy—0 if and only if (或切=0
(iii) implies that xzy—0 for every z^N.
(iv) xyz=0 implies that xzyz=0

Proof, (i) Since xy—0 implies (yxf=0, yx—0
(ii) From the fact that f—for G疚y+■砂一(Jr+功=°・

But x(-y) may be not -xy because the left distibutive law is not 
satisfied.
(iii) Since (xzy)2—0 for yx—0, xzy—0.
(iv) is proved by similar method.

Abias's order in near-rings without nonzero iHlpotent elements is 
introduced 온iighdy differeutiy thro^h the lemma.

Lemma 1. Let an order <be given by x<y if a효d only if 
for every 电｝ WN in a near-ring N. If N has no nonzero nilpotent 
elements, (NS is a partially ordered set.

Proof, (i) suppose that x<y and y<x. Since and xy=f
we have (y-x)%—0 and (x-y)y~0. By remark (i) and (ii) we obtain 
x(x-y)=(-y)(x-y) - 0. Thus 0 —x(x-y)+(-y)(x-y)=(x-yf - 0.
Hence x-^=0. From this we know that <is antisymmetric.
(ii) Suppose that x<y and y<z. Since (y-z)x=0 and (z-y)y=0,(纣如= 

(z-y)yx=(z-y)^—(z-y)x=0 for dtf~0 implies ab=0.
Thus zx—yx=^. Hence we obtain x<z.

By similar 시acnlatio효 we know that implies xz^yz for 
every zEN by remark (iv).

Abian showed that the fact that x^y and u<v implies that xu<y 
» in his paper(l). But in near-ring case that may be not true. With 
additional conditions we obtain sim고ar result for near-rin^.

Lemma 2. Let N be a near-ring without nonzero nilpotent elements. 
If xEC(N) where C(N) is 난le center of N, then xu^yv if x<y 
and u<v.
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Proof. Since (v~u)u=Ot (v-u)ux=(v-u)xux—0. And (y-x)x—fy-x)xv=(y~ 
x)vx=(y-x)vtix~O by assumption. Thus yvxu =xvxu—vxux=uxux—xuxu= 
(xuf
If e is a central idempotent in N then we know that ex<x for 
every xEN for xex—exe—exex~(exf. We study the role of idempotents 
in N with our order elation.

Lemma 3. Let ats be elements in a near-ing N without nonzero 
nilpotent elements such that s(f~a. Then the followings are true.

(i) sas—a
(ii) and as is an idempotent.
(iii) If x<as for some x^N, then x is an idempotent

Proof. Since (asa-a)asa=(asa~a)a=0, asa(asa-a)~a(asa-a)=(aasa-af=0. 
Thus asa=a*
(ii) since asa~at (asf~as. On one hand (sa-as)sa=(sa-as)as—0 implies 
sa(sa-as)-as(sa-as)—(sa-asf~0.
(iii) Since asx=^f (x-asx)x=0 for ^~as^=asx-asasx=asx-asx~O by (i).
Thus for (x-^)x=0.
We define some tenninolegies to prove our main theorem.

Definition. A nonzero element a in a nean-ring N is called a 
hyperatom in N if and only if for every 乂 CN

(i) x^a impliex x=0 or
(ii) xa^O implies (xa)s~a for some element s in N.

We get the following lemma

Lemma 4. Let x be a nonzero element in a neer-ring N without 
nonzero nilpotent elements. If a<x for some nonzero hyperatom a 
in Nt then there exists an idempotent hyperatom e such that xe^O.

Proof. Since a is a nonzero hyperatom, s(f=a for 廿手。.
By lemma 3 sa—as and as is an idempotent. We mu아 show that 
sa is a hyperatom and sax^O. At first we assume that y<as for
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some yEN, Then ya^asa~a implies ya~0 or ya—a for a is hypera- 
tom. If ya~0 then 0 =yas =yasy —y(asy) —yy2~y\ Thus y~0. Secondly 
if ya^a then 0=(y-as)a=(y-as)s. On one hand (y-as)y—0 for y^as. 
Thus y(y-as)-as(y-as)-(y-asy=0. This means that y~as. Hence the first 
condition for hyperatom is satisffied. To 아low that second condition 
is also satisfied we assume 산lat yas^O for some yEN. Since a is 
hyperatom there exists an r in such that ysar—a(in fact as=sa) 
Thus as is a hyperatom. Finally Hence lemma is proved.

Now we study the relation between hyperatom idempotents and 
nea호-丘시ds. We get the following lemma.

Leema 5. Let e be a hyperatom idempotent of a near-ring N 
without nonzero nilpotent elements. Then the followings ar운 true.

(i) Ne is a near-field,
(ii) If b is another hyperatom idempotent of N and bCC(N), then 

eb=be=0, that is the set of all central hyperatom ioempotents of 
N is orthogonal.

Proof. At first we show that Ne is a subgroup under addition. 
For arbitrary nie, n/ENe nw十形=(鶴厂处2)e by right distributive law. 
On one hand if ne^Oy then there exists an r in 2V such that ner—e 
for e is a hyperatom where e is clearly a right identity of Ne 
for multiplication. Thus re is right inverse of ne. since there exists 
a right identity and a right inverse of every nonzero element ne 
of Ne, Ne is a multiplication group except zero. Thus Ne is a near
field.
(ii) If b is another nonzero central hyperatom idempotent of N, we 
get be and eb are also idempotents of N.
From these facts be<b. And be=O or be—b. If be=bt by similar 
method we get eb~e and e=be=eb=b、This is contradiction to assump
tion. Hence be=가)=0.

Definition. Let N be a nearring.
(1) N is called hyperatomic if for every nonzero element r in 

N there exists a hyperatom a in A such that a<r
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(2) N is called orthogonal complete if supS esists for every orthogo
nally subset S of N.

We easily know that if N is hyperatomic then for every nonzero 
element q of N there exists a hyperatom idempotent e such that 
qe=^0 by lemma 4. Moreover we know that for every element r 
of N the sup^—r where et is central hyperatom idempotents of 
N. In fact for every r in N.

Before we get the main theorem, we prove the following theorem.

Theorem 6. Let {xj be a subset of N such that supx, exists. 
Then for every a in C(N), sup(xaa)=sup(x^)a that is infinitely distributive 
for center of N.

Let sup^ct)=^v. Snce f此 茨끄 i, *&皿

On one hand, let u be an upper bound of xzz. It is sufficient to 
show that va<u. Since and we get

(u-va)xa=(u-v)axt=0
((u-va)a+v)xt—x? for vxt=xf

Thus x.<(u-v)a+v for all L By the fact we get v<(u~va)a+v.
Hence ((u-va)a+v)v=tf. This means uav—vaav~avav that is va~ 

av<u. The theorem is proved.
Now we prove the main theorem.

Theorem 7. A near-ring N is isomorphic to a direct product of 
near-fields if and only if N is hyperatomic and orthogonally complete 
under the condition that every hyperatom idempotent of N is in 
the center of N.

Proof. Let f be an isomorphism from N onto a direct product 
T]Fi of near-fields E・ Let r be a nonzero element and let 顶 

Then there exists some 弁产 0. where 万 Let 跖 be the unit of 
Fj. The element a of N given by with %=跖 and at—0
for 2$ is a hyperatom of R with a<r.
Suppose that x<a. If x^O ax=x^. Thus f(a-x)x)=0. On one hand
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f(a-x)x) =f(a-x))f(x)=(f(a)-f(x))f(x)=(r  ̂6r(x,)> =0. But ra.—O for 详j
and 务偽느弁 We get 为=万 and 为=0 for i钊. Thus a~x.

Secondly let S be an orthogonal subset of N and f(a) = \f(s) I for 
sEX｝, Since S is orthogonal, f(s)f(t)—0 for s，where. s,tCS 
Let f(s)=(x) f(t)=3\ Then x^O implies for all i.
Let v be an element of inverse image of k. where 血=的 for some 
f(s)—(x^ We know that v is supS for f(v)f(s)—(f(s)f.

Conversely, if R is hyperatomic and orthogonally complete we show 
that R is isomorphic to the direct product Ns where ｛务｝ is the 
set of all hyperatom idempotents of N. By lemma 5 we know that 
Ne. is a near-field for all i. Let f be a maapping f defined by f(a)=(ae^ 
from R into JjAfe,. Then this mapping f is a near-ring homomorphism 
for f(a-^b)=((a+b)e)—((ae)-y(be))~f(a)+f(b) and similarly f(ab)=f(a)f 
(b). WeFiust shovrthat fis one to one and onto. At first if f(a)~(ae)~0f 
then ae,=0 for all i.
But sup(ae)=sup(e/i)=a implies a=0, Secondly for arbitrary (爲ej 
in U시we let a be s써)3)because the set is orthogonal, 
then we get

ae^up(a^ei~sup(a^)=a松
Hence f(a)=(ae)=(a^ so that f is onto. The theorem is proved.

To prove the teorem 7 the condition that every hyperatom idempotent 
of N is central is essential. But if the the theorem 6 is true for 
every element a in N, then sup(a^)ei=sup(a^ even if q is not 
central. It is question that any other condition instead of centrality 
satisfies the theorem 6.
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