TOTAL ABSOLUTE CURVATURE OF ORDER k OF IMMERSED SURFACES IN E ${ }^{\text {m }}$

Yong-Soo Pyo

1. Introduction.

S.S.Chern and R.K.Lashof ([4]) studied the total absolute curvature of immersed manifolds in a higher Euclidean space firstly through the ripschitzkidling curvature, and NHKiriper ([5]) who-studied this area was contemporary with them.

Later, many mathematicians studied for the total absolute curvature (or total mean curvature) of immersed manifolds (B.Y.Chen, TJ.Willmore, K.Yano and Y.T.Shin etc.).

Let M be an immersed surface in a Euclidean m-space E^{m}. For a unit normal vector e at p in M , the i -th mean curvatures $K_{(}(p, e)$ $(i=1,2)$ of the immersion at (p, e) are defined by

$$
K_{1}(p, e)=\frac{1}{2}\left[\mathrm{k}_{1}(p, e)+\mathrm{k}_{2}(p, e)\right],
$$

and

$$
K_{2}(p, e)=\mathrm{k}_{1}(p, e) \cdot \mathrm{k}_{2}(p, e)
$$

where $k_{i}(p, e)(i=1,2)$ are the eigenvalues (i.e, principal curvatures) of the second fundamental form at (p, e) (see [1,I]). And the total absolute curvatures $T A_{4}(\mathrm{k})$ of order k of M are defined by

$$
T A,(\mathrm{k})=\int_{B_{0}}\left|K_{\mathrm{i}}(p, e)\right|^{\mathrm{k}} d \sigma_{\wedge} d \mathrm{v}, \mathrm{i}=1,2
$$

where B_{v} is the unit normal bundle of M and $d \sigma_{\wedge} d \mathrm{v}$ is the volume element of B_{0}. We can easily know that $T A_{2}(1)$ is the total absolute curvature of M .

In this paper, we shall study some properties of the total absolute curvatures $T A_{1}(\mathrm{k})$ and $T A_{2}(\mathrm{k})$ of order k for some special immersed surfaces $E^{\text {m }}$.

2. Flat surfaces in $\mathbf{E}^{\text {m }}$

Let M be an immersed sutface in an Enclidean space E^{n} af dimension m . We choose a local field of orthonormal frames $e_{2}, e_{2}, \xi_{3} \cdots, \xi_{m}$ in E^{m} such that, restricted to M, the vectore $e_{6} e_{2}$ are tangent to M (and, consequently, the remaining vectors $\xi_{3} \cdots, \xi_{m}$ are normal to M).

In this paper, we shall make use the following convention on the ranges of indices;

$$
l \leqq \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \cdots \leqq 2, \quad 3 \leqq \mathrm{r}, \mathrm{~s}, \cdots \leqq \mathrm{~m}
$$

unless otherwise ststed.
In terms of canonical forms ω_{1} and the connection forms $\omega_{i j}$, the structure equations on the surface M are given as follows:

$$
\begin{aligned}
& d \omega_{\mathrm{i}}=\Sigma \omega_{\mathrm{n}^{\wedge}} \omega_{j^{\prime}}, \quad \omega_{\mathrm{y}}+\omega_{\mathrm{jl}}=0, \\
& d \omega_{\mathrm{lj}}=\Sigma \omega_{\mathrm{tk}}{ }^{\wedge} \omega_{\mathrm{kj}}+\Omega_{\mathrm{y}^{\prime}} \quad \Omega_{\mathrm{y}}=\frac{1}{2} \Sigma R_{\mathrm{ijkl}} \quad \omega_{\mathrm{k}^{\wedge}} \omega_{\mathrm{l}},
\end{aligned}
$$

where $\Omega_{i y}$ (resp. $R_{i \mathrm{ikj}}$) denotes the curvature form (resp. curvature tensor) on the surface M. Since $\omega_{r}=0$, by Cartan's lemma, we may write

$$
\omega_{y i}=\Sigma h_{i j}^{\mathrm{r}} \omega_{i,}, \quad h_{i j}^{\mathrm{r}}=\mathrm{h}_{\mathrm{j}}^{\mathrm{r}} .
$$

Then the Gauss curvature G and the mean curvature α are given respectively by

$$
\begin{aligned}
& G=\Sigma\left(h_{11}^{\mathrm{r}} h_{22}^{\mathrm{r}}-h_{12}{ }^{\mathrm{r}} \mathrm{~h}_{12}^{\mathrm{r}}\right), \\
& a=\frac{1}{2}\left[\Sigma\left(\mathrm{~h}_{11}^{\mathrm{r}}+\mathrm{h}_{22}^{5}\right)^{2}\right]^{\frac{1}{2}} .
\end{aligned}
$$

Furthermore, we can choose normal vectors $e_{3} e_{4}, \cdots, e_{\mathrm{m}}$ at p in M satisfying the following two equations ([6], [10]);

$$
\begin{aligned}
& K_{1}(p, e)=\frac{1}{2} \sum_{r=3}^{5}\left(h_{11}^{\mathrm{r}}+h_{22}^{\mathrm{r}}\right) \cos \theta_{\mathrm{r}} \\
& K_{2}(p, e)=\sum_{\mathrm{r}=3}^{5} \lambda_{\mathrm{r}-2}(p) \cos ^{2} \theta_{\mathrm{r}}, \quad \lambda_{1} \geqq \lambda_{2} \geq \lambda_{3}
\end{aligned}
$$

for any unit normal vector $e=\Sigma \cos \theta_{r} e_{r}$ at p, where $\lambda_{r-2}(p)$ is the determinant of $\left(h_{\mathrm{i}}{ }^{\mathrm{r}}\right)$.

Remark. In [6], Pyo has proved that $\lambda_{3} \leqq 0$, and a compact surface M is homeomorphic to a 2 -sphere if $\lambda_{3}=0$.

In this chapter, we shall take a local field of orthonormal frames $e_{r} e_{2}, \cdots, e_{\mathrm{m}}$ satisfying the above equations.

Let M be a compact flat surface in E^{m}, i.e, $G=\lambda_{1}+\lambda_{2}+\lambda_{3}=0$. For a unit normal vector $e=\Sigma \cos \theta_{\tau} e_{\mathrm{r}}$ at p in M , the second mean curvature $\mathrm{K}_{2}(\mathrm{p}, \mathrm{e})$ is given by

$$
\begin{aligned}
\mathrm{K}_{2}(p, e) & =\lambda_{1}(p) \cos ^{2} \theta_{3}+\lambda_{2}(p) \cos ^{2} \theta_{4}+\lambda_{3}(p) \cos ^{2} \theta_{5} \\
& =\lambda_{1}(p)\left(\cos ^{2} \theta_{3}-\cos ^{2} \theta_{4}\right)+\lambda_{3}(p)\left(\cos ^{2} \theta_{5}-\cos ^{2} \theta_{4}\right) .
\end{aligned}
$$

Therefore, for a positive even integer k, we have

$$
\begin{aligned}
& \int_{\mathrm{S}^{\mathrm{m}-3}}\left|K_{2}(p, e)\right|^{\mathrm{k}} \mathrm{~d} \sigma \\
& =\sum \frac{\mathrm{k}!}{\mathrm{r}!\mathrm{s}!} \lambda_{1}(p)^{\mathrm{r}} \lambda_{3}(p)^{3} \int_{\mathrm{s}^{\mathrm{m} 3}} \sum_{t!(-1)^{\mu}+\mathrm{v}_{\mathrm{r}}!\mathrm{s}!}^{\mathrm{u}!\mathrm{v}!\mathrm{w}!} \cos ^{2} \theta_{3} \cos ^{2 \mathrm{u}+2 \pi} \theta_{4} \cos ^{2 \pi} \theta_{5} \mathrm{~d} \sigma
\end{aligned}
$$

for nonnegative integers r, s, t, u, v and w such that $r+s-k, t+u=r$ and $\mathrm{v}+\mathrm{w}=\mathrm{s}$. If we put

$$
T_{t u+v, w}=\sum(-1)^{1+!} \frac{w!}{i!1!} \frac{C_{2(t+u+v+i+l+1)}}{C_{2(t+u+v+1+b+1}} \quad \mathrm{B}\left(\frac{2 t+2 i+1}{2}, \frac{2 u+2 v+2!+1}{2}\right),
$$

where $i, 1$ are nonnegative integers such that $i+1 \leqq w, C_{n}$ is the volame of unit n-sphere $\int_{\text {gres }}$ and B is the Beta function (see [8], [10]), then we have

$$
\begin{aligned}
& T A_{2}(k)=\int_{M}\left[\int_{S^{m}-3}\left|K_{2}(p, e)\right| \mathrm{k} d \sigma\right] d v \\
& \quad=\frac{2 C_{m+2 k-3}}{C_{2 k}+3} \sum \frac{k!}{r!s!} \sum \frac{(-1)^{u+v} r!s!}{t!u!v!w!} T_{t, u+v, w} \int_{M} \lambda_{1}(p) \lambda_{3}(p)^{s} d v
\end{aligned}
$$

Hence we have the following theorem.
Theorem 2.1. Let M be a compact flat surface in E^{m} and k a positive even interger. Then the second total absolute curvature

$$
T A_{2}(\mathrm{k})=\frac{2 \mathrm{C}_{\mathrm{m}}+2 \mathrm{k}-3}{\mathrm{C}_{2 \mathrm{k}+3}} \sum \frac{(-1)^{u+v} \mathrm{k}!}{\mathrm{t}!\mathrm{u}!\mathrm{v}!\mathrm{w}!} \quad T_{\mathrm{L}, \mathrm{u}+\mathrm{w}, \mathrm{w}} \quad \int_{\mathrm{M}} \lambda_{1}(\phi)^{\mathrm{r}+\mathrm{v}} \lambda_{3}(p)^{\mathrm{p}+\mathrm{w}} \mathrm{dv}
$$

for nonnegative integers t, u, v and w such that $t+u+v+w=k$.
And also, we can prove the following theorem because $\lambda_{3}=-\lambda_{1}-\lambda_{2}$ for a flat surface.

Theorem 2.2. Let M be a compact flat surface in $E^{\text {m }}$ and let k be a positive even integer. Then we have

$$
T A_{2}(\mathrm{k})=\frac{2 \mathrm{C}_{\mathrm{m}}+2 \mathrm{k}-3}{\mathrm{C}_{2 \mathrm{k}+3}} \sum \frac{(-1)^{\mathrm{s}+\mathrm{u}} \mathrm{k}!}{\mathrm{k}!\mathrm{s}!\mathrm{t}!\mathrm{u}!} T_{\mathrm{r}, \mathrm{~s}, \mathrm{~s}+\mathrm{w}} \int_{\mathrm{M}} \lambda_{1}(p)^{\mathrm{r}+\boldsymbol{s}} \lambda_{2}(p)^{\mathrm{tu} \mathrm{u}} \mathrm{dv}
$$

for nonnegative integers r, s, t and u such that $r+s+t+u=k$.
Corollary 2.3. Let M be a compact flat surface in E^{m} with $\lambda_{2}=0$ and k a positive even integer. Then we have

$$
T A_{2}(\mathrm{k})=\frac{2 \mathrm{C}_{\mathrm{m}}+2 \mathrm{k}-3}{\mathrm{C}_{2 \mathrm{k}+1}} \sum \frac{(-1)^{\mathrm{s}} \mathrm{k}!}{\mathrm{r}!\mathrm{s}!} B\left(\frac{2 \mathrm{r}+1}{2}, \frac{2 \mathrm{~s}+\mathrm{l}}{2}\right) \int_{\mathrm{M}} \lambda_{1}(p)^{\mathrm{k}} \mathrm{dv}
$$

where r and s are nonnegative integers such that $r+s=k$.

3. Pseudo-umbilical surfaces in $\mathbf{E}^{\mathbf{}}$

Let M be a pseudo-umbilical surface in a Euclidean m-space E^{m}. Then we can choose a local field of orthonormal frames $e_{\mathrm{r}} e_{z} \xi_{3} \cdots ; \xi_{\mathrm{m}}$ defined along M such that $e_{\mathrm{p}} e_{2}$ are tangent, $\xi_{3} \cdots, \xi_{\mathrm{m}}$ are normal to \mathbf{M} and the i -th mean curvatures ($\mathrm{i}=1,2$) are given by

$$
\begin{aligned}
& K_{1}(p, e)=\frac{1}{2} \sum\left(h_{11}^{\mathrm{r}}+h_{22}^{\mathrm{r}}\right) \cos \theta_{\mathrm{r}^{\prime}} \\
& K_{2}(p, e)=\sum \lambda_{\mathrm{r}-2}(p) \quad \cos ^{2} \theta_{\mathrm{r}^{\prime}} \quad \lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{\mathrm{m}-2}
\end{aligned}
$$

for a unit normal vector $e=\sum \cos \theta_{\mathrm{r}} \xi_{\mathrm{r}}$ at p in M . Since M is a pseudoumbilical surface, if we take ξ_{3} in the direction of the mean curvature vector, then

$$
h_{11}^{3}=h_{22}^{3}=\alpha, h_{12}^{3}=h_{21}^{3}=0 \text { and } h_{11}^{\mathrm{r}}+h_{22}^{r}=0
$$

for $r=4,5, \cdots, m$, where α is the mean curvature at p ([3]).

Theorem 3.1. Let M be a compact pseudo-umbilical surface in E^{m} and let k be any positive integer. Then the first total absolute curvature $T A_{1}(\mathrm{k})$ of order k is given by

$$
T A_{1}(\mathrm{k})=\frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k+1}{2}+1\right) C_{m+k-3}} C_{k+1} \quad 2 \sqrt{\pi} \int_{M} a^{k} d v,
$$

where Γ^{\prime} is the Gamma function.
Proof. For a unit normal vector $e=\sum \cos \theta_{r} \xi_{\mathrm{r}}$ at p, since $\left|K_{1}(p, e)\right|=\frac{1}{2}\left|\sum\left(\mathrm{~h}_{11}^{\mathrm{r}}+\mathrm{h}_{22}^{\mathrm{r}}\right) \cos \theta_{\mathrm{r}}\right|=a\left|\cos \theta_{3}\right|$,

$$
\begin{aligned}
T A_{1}(k) & =\int_{M} \alpha^{k}\left[\int_{S^{m-3}}\left|\cos \theta_{3}\right| d \sigma\right] d v \\
& =\frac{C_{m+k-3}}{C_{k+1}} \int_{M} \alpha^{k}\left[\int_{0}^{2 \pi}\left|\cos \theta_{3}\right|{ }^{*} d \theta_{3}\right] d v \\
& =\frac{C_{m+k}-3}{C_{k+1}} 2 \sqrt{\pi} \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}+1\right)} \int_{M} \alpha^{k} d v
\end{aligned}
$$

(by spherical integration ([8]).
Remark. From Theorem 3.1, we obtain

$$
T A_{1}(2)=\frac{1}{2 \pi} C_{m-1} \int_{M} \alpha^{2} d v \geqq 2 C_{m-1}, \text { since } \int_{M} \alpha^{2} d v \geqq 4 \pi
$$

And, if the equality sign holds, then M is a 2 -sphere in an affine 3 -space ([1,I], [11]).

Theorem 3.2. Let M be a compact pseudo-umbilical surface in E^{m} with $\lambda_{\mathrm{m}-2}=0$ and k a positive integer. Then we have

$$
T A_{2}(k)=\frac{2 \sqrt{\pi} \Gamma\left(k+\frac{1}{2}\right) C_{m+2 k-3} \int_{M} a^{k} d v .}{k!C_{2 k+1}}
$$

Proof. Since $0 \geq \lambda_{2} \geqq \cdots \geqq \lambda_{m-2}=0$,

$$
K_{2}(p, \varepsilon)=\sum \lambda_{\mathrm{r}-2}(p) \cos ^{2} \theta_{\mathrm{r}}=\lambda_{\mathrm{r}}(p) \cos ^{2} \theta_{3}
$$

for a unit normal vector $e=\sum \cos \theta_{r} e_{r}$ at p. Hence

$$
\tau_{A_{2}}(\mathrm{k})=\int_{\mathrm{M}}\left[\int_{\mathrm{S}^{m}-3} \alpha^{2 \mathrm{ck}} \cos ^{2 \mathrm{k}} \theta_{3} \quad \mathrm{~d} \sigma\right] \mathrm{dv}
$$

By spherical integration ([8]), we have

$$
\begin{aligned}
T A_{2}(\mathrm{k}) & =\frac{\mathrm{C}_{m+2 k}-3}{\mathrm{C}_{2 k+1}} \int_{M} \mathrm{a}^{2 k}\left[\int_{0}^{2 \pi} \cos ^{2 k} \theta_{3} \mathrm{~d} \theta_{3}\right] d v \\
& =\frac{\mathrm{C}_{\mathrm{m}+2 \mathrm{k}-3}}{\mathrm{C}_{2 \mathrm{k}+1}} 2 \sqrt{\pi} \frac{\Gamma\left(\mathrm{k}+\frac{1}{2}\right)}{\Gamma(\mathrm{k}+1)} \int_{\mathrm{M}} \mathrm{a}^{2 k} \mathrm{dv}
\end{aligned}
$$

Remark. For a compact pseudo-umbilical surface in E^{w} with $\lambda_{m-2}=0$,

$$
T A_{2}(1)=\frac{\pi C_{m}-1}{C_{3}} \int_{M} \alpha^{2} d v .=C_{m-1} \chi(M)
$$

by the Gauss-Bonnet theorem, where $\chi(M)$ is the Euler characteristic of M. Since $T A_{2}(1) \geq C_{m-1} \beta(M)$ for the sum $\beta(M)$ of the betti numbers of M (see $[4,1]$), $\chi(M)=\beta(M)=2$. Hence M is a 2 -sphere. This is consistent with [9].

For a compact pseudo-umbilical flat surface M in E^{m} with flat normal connection, we can choose a local field of orthonormal frames $e_{\mathrm{r}} e_{2}, \cdots, e_{\mathrm{m}}$ such that

$$
\mathrm{h}_{11}^{3}=\mathrm{h}_{22}^{3}=\mathrm{h}_{11}^{4}=-\mathrm{h}_{22}^{4}=a, \mathrm{~h}_{12}^{3}=\mathrm{h}_{12}^{4}=\mathrm{h}_{4}^{\mathrm{r}}=0
$$

for $r=5,6, \cdots, m$ ([3]). For a positive even integer k,

$$
\begin{aligned}
& T A_{2}(\mathrm{k})=\int_{\mathrm{M}} \alpha^{2 k[}\left[\int_{\mathrm{S}^{m}-3}\left|\cos ^{2} \theta_{3}-\cos ^{2} \theta_{4}\right|^{k} d \sigma\right] \mathrm{dv} \\
& =\int_{\mathrm{M}} \alpha^{2 k} \sum \frac{\{-1)^{\mathrm{s}} \mathrm{k}!}{\mathrm{r}!\mathrm{s}!}\left[\int_{\mathrm{S}^{\mathrm{m}-3}} \cos ^{2 \pi} \theta_{3} \cos ^{28} \theta_{4} \mathrm{~d} \sigma\right] \mathrm{dv} \\
& =2 \frac{\mathrm{C}_{\mathrm{m}+2 \mathrm{k}-3}}{\mathrm{C}_{2 \mathrm{k}+1}} \sum \frac{(-1) \mathrm{s} \mathrm{E}!}{\mathrm{r}!\mathrm{s}!} \quad \mathrm{B}\left(\frac{2 \mathrm{r}+1}{2}, \frac{2 \mathrm{~s}+1}{2}\right) \int_{\mathrm{M}} \mathrm{a}^{2 \mathrm{k}} \mathrm{dv}
\end{aligned}
$$

for nonnegative integers r, s such that $r+s=k$. And

$$
\begin{aligned}
T A_{2}(1) & =\int_{M} \alpha^{2}\left[\int_{S^{m-3}}\left|\cos ^{2} \theta_{3}-\cos ^{2} \theta_{4}\right| d \sigma\right] d v \\
& =\frac{2^{C_{m-1}}}{\pi^{2}} \int_{M} \alpha^{2} d v \geqq 4 \pi C_{m-1}
\end{aligned}
$$

The equality sign holds if and only if M is a Clifford torus, i.e, M is the product surface of two plane circles with the same radius ([3]).

Hence we obtain the following theorem.
Theorem 3.3. Let M be a compact flat pseudo-umbilical surface in E^{m} with flat normal connection and let k be a positive even integer. Then we have

$$
T A_{2}(\mathrm{k})=\frac{2 \mathrm{C}_{\mathrm{m}+2 \mathrm{k}-3}}{\mathrm{C}_{2 \mathrm{k}+1}} \sum \frac{(-1)^{\mathrm{s}} \mathrm{k}!}{\mathrm{r}!\mathrm{s}!} \quad \mathrm{B}\left(\frac{2 \mathrm{r}+1}{2}, \frac{2 \mathrm{~s}+1}{2}\right) \int_{\mathrm{M}} \mathrm{a}^{2 \mathrm{k}} \mathrm{dv}
$$

for nonnegative integers r, s such that $r+s=k$.

References

1. B.Y.Chen, On the total curvature of immersed manufolds, I,II,II,N,V and V1, Amer. J. Math 93(1971), 148-162 ; Amer. J. Math. 94(1972), 799-809; Amer. J.Math. 95(1973), 636-642; Bull. Inst. Math. Acad. Sinica 7 (1979), 301-311 ; Bull. Inst. Math. Acad. Sinica 9 (1981), 509-516; Bull. Inst. Math. Acad. Sinica 1 (1983), 309-328.
2. \qquad Pseudo-umblical submanfolds of a Riemannian manifold of constant curvature II, J. Math. Soc. Japan 25(1) (1973), 105-114.
3. \qquad Total mean curvature of immersed surfaces in $\mathrm{E}^{\text {m }}$, Trans. Amer. Math. Soc 218(1976), 333-341.
4. S.S.Chern and R.K.Lashof, On the total curvature of immersed manifolds I and II, Amer. J.Math. 79(1957), 306-318; Michigan Math J. 4(1958), 5-12.
5. N.H.Kuper, Immersions with munimal total absolute curvature, Coll. de Geometrie Differentielle Globale (Bruxelles, 1958), 75-88.
6. Y.S.Pyo, A study of surfaces in $E^{\text {m }}$ via the Frenet frame, Graduate School of Keimyung Univ.(1986).
7. Y.T.Shin, On the total curvature of immersions, Thesis Coll., chungnam Univ. Nat. Sci. 13(2) (1974), 7-18.
8. \qquad and Y.S.Pyo, A derivation of some spherical integral formulas, JKeimyung Math. Sci. 6(1986), 1-8.
9. \qquad , On pseudo-umbilical surfaces immersed in a Euclidean m-space E^{m}, Cormm. Korean Math. Soc 3(1) (1988), 99-108.
10. S.B.Sur, G-total curvature of immersed surfaces in E^{m}, Graduate School of Keimyung Univ. (1987).
11. TJ.Willmore, Mean curvature of mmersed surfaces, An Sti Univ. "AL I Cuza" Jası. Sect. I a Mat. 14(1968), 99-103.
12. K.Yano and B.Y.Chen. Mimimal submanifolds of a higher dimensional sphere, Tensor. N.S.22(1971), 369-373.

National Fisheries University
Pusan 608-737, Korea

