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ON FILTER-CONVERGENCE STRUCTURES

AND SEQUENTIAL CONVERGENCE
STRUCTURES

Woo Chorl Hong

1. Intreduction

In (3], (6], [73, [8], and [9], the authors introduced convergence
structures by filters or sequences and investigated many properties
of these convergence structures and convergence spaces(or limit spaces)
determined by these convergence structures. It is well-known that
a convergence structure determines only a Cech closure operator([2])
which is 2 weakened form of a Kuratowski closure operator. Indeed,
a convergence space may nof be a topological space.

In this paper, we shall define filter-convergence structures and
sequential convergence structures and investigate properties of these
convergence structures. The motivation we define and study filter-conve-
rgence structures and sequential convergence structures is that spaces
determined by these convergence structures are topological spaces.
Moreover, Frechet spaces will be determined completely by sequential
convergence structures. Hence these convergence structures are more
stronger than other convergence structures defined by many authors
as ahove. So, these convergence structures are more useful to characte-
rize topological spaces and Frechet spaces.

In section 2, we define filter-convergence structures. We shall investi-
gate properties of filter-convergence structures and show that there
exists a subcollection FCLX] of the set of all filter-convergence structu-
res on X such that FC[X] and the set of all topologies on X are
dual-isomorphic.

In last section, we define sequential convergence structures and
study properties of sequential convergence structures. We shall show
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that Frechet spaces are determined completely by sequential converge-
nce structures and there exists a subfamily SC*[X] of the set of
all sequential convergence structures on X such that the set of all
Frechet topologies on X and SC*LX] are dual-isomorphic.

2. Filterconvergence structures

Let X be any non-empty set and let FIX1 denote the set of all
filters on X. Then, the following theorem is well-known and very
useful to characterize topological spaces. This fact will give us a
motivation to construct and investigate filter-convergence structures.

Theorem. In a topological space X, the following statements are

always frue.

Q) I F€FX] and KIEF for some zxEX, then F>x in the
space X

@ Let & HEFX] f FCFH and H—>x, then =

(3) Let x€X and ACX. If > x for each FEFIX) with AEZ,
then & +x for each F & FLX] with yEX | F>y for some FEF
[X] with A€F}CF".

Definition 2.1. A mapping ¢ : FIX1~>% (X} is called a filter-converge-
nce structure om X if it satisfies the following properties :

FC 1) If FEFX] and {x}€F then xEg(F).

FC2) Let . F E€EFX]. HF CH and x € ¢(FK ), then x € g(FH).

(FC 3) Let x€X and ACX. If x¢ g(F) for each FE€ FX] with
ACF then x&¢(F;) for each F € FIX] with PEX|yEalF) for
some FE F{X] with ACF)CF'

The following theorem is clear, hence we omit the proof.
Theorem 2.2. Let (X.7) be a topological space. Define a mapping

g FIX1>9 (X) as follows : for each FEFX],
gAPH=EX I F> 1 in the space (X.I)L
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Then, clearly, g, ia a filter-convergence structure on X.

Theorem 2.3. Let q be a filter-convergence structure on X. Define
a mapping ¢, - FLX]>P(X) as follows : for each subset 4 of X,
fA)=EX | xEg(F) for some FEFIX] with AEF}
Then ¢, is a Kuratowski closure operator on X. That is, (X¢) is
a topological space.

Proof. 1t is clear that (1) ¢{(¢)=¢ and (2) for each ACX, ACTcfA).

(3) Let A be any non-empty subset of X and suppose that x¢kcfA).
Then x¢q(F) for each FE€ FIX] with A€ F By definition of
and (FC 3), z¢4(5) for each F'E€FX] with ¢f4)EF". Hence
we have xécfcfA)) by definition of c.. By above (2). cfA)Cefc,(4)
is always true. Therefore, cfA)=cc(A)).

(4) Let A and B be nom-empty subsets of X. By (2), we have
c(A)UcB)CefAiUB). Tt is enough to show that ¢fAUB)CcfA)JcAB).
Let xEc,{AUB). Then, by definition of ¢, xC€¢( %) for some FEF X]
with AUBE.S Suppose that FnA=¢ and F 'NB=¢ for some ele-
ments F and F ‘of & Then, since & is a filter, FNF €%, and
so FNF 'NA=¢ and FNF 'nB=¢. Hence we have (FNF ')A
uB)=¢, which is a contradiction to the fact that AUBES Thus,
FNA+ ¢ or FNB¥* ¢ for each FEF 1t follows that {FnA | FE F}
or {FNB | FEF} is a filterbase on X. Let {FNA | FES} be a filterbase
and let & 'denote the filter on X generated by the filterbase {Fn
A|FEF). Then, cearly, FC.F and AEF". Since 2E¢(F), by (FC
2), we have x€q(% ). Hence xCScfA), and therefore, xCcfA)UcAB).

Remark. In Theorem 2.3, we don't have any guarantee that for
each x€X 1Cgq(+1{x)), where A4{x} denotes the nbd filter of x in
the space (Xc). Hence, it need not be true that xE¢(F) iff F
converges to x in (Xi¢) (written 5>z in (Xc).

Lemma 2.4. In Theorem 2.3, assume that for each xEX, x€q / #x)).
Then we have, for each x€X,

HM)=nlF € FIX] | x€q( ).
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Proof. Since x€q(.A#x)), clearly, we have .#x)DN{FEAX] | xEq
(A}

Conersely, suppose that there exists N € #{x) such that N§ N {FEF
X1 xeq(F)). Then, there is FE FX] such that x€4g(F) and
NE.F Since N¢F inyN)¢F where int(N) is the interior of N in
(X.c). So, F-inttN)=¢d for each FEF. Let F be the filter on X
generated by the filterbase {F-ini(N)| F&€ #}. Then, clearly, we have
FCFand intfN)GF'. Let .# be the ultrafilter on X with F'C
#. Since int (NJ¢F 'and ¥ C.# and £ is ultra, X-int(N)E .«
and xEg(.#). Hence we have x&c(X-int(N)) by definition of ¢, which
is a contradiction.

Theorem 2.5. In Theorem 2.3, assume that for each x€X
rE€gn| FEAX] | x€q(FH).
Then, x€(F) iff F>x in (X

Proof. If rcg(%), then Ax)C.% by Lemma 24. Hence 5z
in Xc,).

Conversely, if 9> x in (X,c,), then Ax}C % by definition of filter
convergence in a topological space. By hypothesis and Lemma 24,
xeq( Ax)). Since A)CF and €Y %), x<q(F) by (FC 2).

Let FCIX] be the set of ali filter-convergence structures on X
satisfying the assumption of Theorem 25 and let 7{X] be the
set of all topologies on X. Define orders <and <* on FC[X} and T
(X3 by

02qr g FYC g F) for each FEFX]
and

T L* e T C T, (set inclusion order),
respectively. Then, by Theorem 22, Theorem 2.3, and Theorem 2.5,
we obtain the following

Corollary 2.6. Two partially ordered sets (FCIX], <) and (T
[X1,£*) are dual-isomorphic under the correspondence ¢—> 7. o where
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T~ {ACX | ¢ X-A)=X-A}
3. Sequential convergence structures

Let X be any non-empty set and let S[X] denote the set of all
sequences in X. Sequences in X will be denoted by small Greek
letters o,f etc. The kth term of the sequence « is denoted by
afk). The small Latin letters s, t denote increasing mappings of the
natural number set N into itself. The composition a ° s is the subseque-
nce of @ which has a(s(k)} as k-th term. Then. The following theorem
is also weil-known and very useful to characterize first-countable spaces
or Frechet spaces. This fact will give us 2 motivation to define sequential

COnvelgeqce stiuctures,

Definition 3.1. A topological space X is called Frechet(I1 i the
closure of any subset A of X is the set of all limits of sequences
in A.

Remark. It is well-known that every first-countable space is Frechet.
In [4] and [5], SP. Franklin investigated properties of Frechet spaces.

Theorem. In a Frechet space X, the following statements are always
true.

(1) For each constant sequence (x) in X, {x) converges to x.

(2) If a converges to x, then every subsequence a° s of a converges
to x.

(3) Let x€X and ACX. If for each sequence a irn A o does
not converge to x, then for each sequence B in {y€X | a converges
to y, for some a in A}, B also does not converge to x.

Definition 3.2. A non-empty subfamily .~ of S[XIXX is called
a sequenttal convergence structure on X if it satisfies the following
properties :

(SC 1) For each xE€X, ({x), x)€ .7, where (x) is the constant sequence
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whose k-th term is x for all indices &.

(SC 2) If (awx)c £, then (ae°s, x)€ £ for each s.

(SC 3) Let 2z€X and ACX. If (ax)¢ .2 for each a in 4
then Bx)§ .~ for each B in {yEX | (0,y)E .~ for some a in Al

If a sequential convergence structure .2 on X is given, then the
pair (X.2") is called a sequential convergence space.

By definition of Frechet spaces, we obtain the following

Theorem 3.3. Let (X .9) be any Frechet space and let -Z, be
the set of all pairs (o) ESIX]XX such that o converges to x in

the space (X, 7). Then, £ is a sequential convergence structure
on X.

Proof. It is straightforward.

Theorem 3.4. Let #be any sequential convergence structure on
X. Define a mapping ¢, P(X)>F (X} as follows : for each subset
A of X, ¢ (A={xr€X | (@x)€ # for some o in A} Then, ¢, is
a Kuratowski closure operator on X. That is, (X,c ) is a topological
space.

Proof. 1t is clear that (I)c_(¢)=¢ and (2for each subset A of
X, ACc . (A).

(3) Let A be any non-empty subset of X and suppose that x¢<¢ , (4).
Then {(o,x)§ .~ for each a in A. By definition of ¢ >, and (SC 3),
we have (Bx)¢ .~ for each B in ¢, (4). Hence x¢c, (c . (4). By
above (2), ¢ ,(A)Cc¢ - {¢ ,(A) is always true. Therefore, ¢ AA)=c fc,
(A)).

(4) Let A and B be non-empty subsets of X. By (2), we have
¢ (Al (B)Cc ' (AUB). It is enough to prove that ¢ - (AUB)Cc,
(A)ue ,(B). Let x&c (AUB). The (a,x)E.7 for some o in AUB. We
divide the proof into two cases.
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Case 1. The range of a is finite, ie., {of%) | *EN} is finite. Then
there exists an element p of {a&) [ kEN]} such that a°s=@) for
some subsequence a°s of a. Since (OX)E.#, (a°s, XIELby (SC
2), and hence ((§), x})€.7. From the fact that a is a sequence in
AUB, we have p€A or pEB. Therefore, by (SC 1), xS¢ - (ANc . (B).

Case 2. {ak) | €N} is infinite.
Then {ofk) | kEN}NA is infinite or {o@) | kEN}NB is infinite. If
{ofk) | EENINA is iofinite, then there exists a subsequence o s
of o in A Since (ax)€ 4 (a°s, X)E.# by (SC 2), and hence
x€c ,(A). Therefore, x€c (A) Uc (B).

Let .#” be a seywentid convergence structure on X. Hereafter, we
use the notation #* for the set of all pairs (ax)ESIXIXX such
that a converges to x in the topological space (X, c - ). Then, clearly,
we have _Z* is also a sequential convergence structure on X, but
ZL# % in general.

Now we investigate relations between .Z and _Z*.

Lemma 3.5. Let # be a seuential convergence structure on X.

Then, A is 2 nbd of x in K¢ ) iff for each (ux)€ 2, a is eventually
in A

Proof. Let A be a nbd of x in 0(,04,) and {(0x)€ £ Since A
s nbd of x in (Xic,), there exists an open set O in (Xc,) such
that x€0CA. It follows that ¢, (X-0)=X-O, and thus there does
not exist § in X-O such that (Bx)&.# by definition of ¢ ,. We now
prove that {¢EN | aR)EX-0} is finite. f #EN | B)EX-0} is infinite,
then there exists a subsequence a°s of a in X-O. Since (ax)E.~
(@wes, XYL by (SC 2), which is a contradiction. From this fact,
we have o is eventually in Q. Therefore, o is eventually in A.

Conversely, suppose that there exists a subset A of X such that
A is not a nbd of x in K¢ ) and for each (a,x)€ .7, a is eventuaily
in A. Then, since a is eventually in A for each (gx)€ _# and ((x)x)
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€ _Z by (SC 1), clearly, we have xEA. Since A is not a nbd of
x in Xc,), x€c (X-A)}-(X-A). By definition of ¢, there exists 2
sequence ¢ in X-A such that (o,x)€ . Then, by hypothesis, a is
eventually in A, which is a contradiction.

Theorem 3.6. Let # be a sequential convergence structure on
X. Then, we have

Q) £C L% and

@) ¢c,=c

Proof. (1) Let (ax)& 22 Then, by Lemma 35, for each nbd A
of x in the topological space (Xc,), o is eventually in A. Hence
a converges to z in (X, ), and therefore (ox)E€ £

(Z) Let A be any non-empty subset of X. Then, by above (1),
we have ¢, (A)Cc .(A). Conversely, let x€c 4(4). Then (axjEL*
for some a in A. By definition of %, a converges to x in (X¢ ).
It follows that x&c, (fafk) | RENNCc (A). therefore, ¢, = .

Corollary 3.7. Let . be a sequential convergence structure on
X. Then, we have

(1) for each sequential convergence struture on X with ¢, =¢ L
¥ =% . and

(2) Ul is a sequential convergence structure on X with ¢, =¢ » }
=_%.

Theorem 3.8. Let .~ be any sequential convergence structure on
X If .# satisfies the additional two properties : (SC 4) and (SC 5),
then 2=_7/*

(SC 4) let a€SIX]. X (@°s x)&_7~ for some s such that N-
{s(k) | REN} is finite, then (ax)€.Z£

(SC 5) Let a€S[X]. If there exists a sequence (B.) in SIX] or
a finite subset {Bi, B2 ---B.} of S[X] such that (1) for each i, Bi=acf
for some mapping f, - N>N(need not be injective or increasing), (2)
for each i, B, x€ _.#, () for each ixj fN)NS(N) =¢, and (4)
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) fN)=NGn finite case U {N)=N), then (a1)€.7.

Proof. By Theorem 36(1), .Z C _£*
Conversely, let (gx)€.2* . o converges to x in the space (Xc,).
We divide the proof into three cases.

Case 1. k€N ((ak), DE £} is empty.

Then, since (ax)€.2% x€c, (lafk) | REN]) and there exsts § in
{ofk) | EEN} such that (B, x)E £ If {Buk)| kEN} is finite, then
there exist k&N and a subsequence B, °t of PB: such that B, o t=(Pulk
o). Since Bur)EZ, ((Bu®n), x)E L by (SC 2), and hence there exists
an element Bik) of {a®) ! REN} such that ((Buks), x)E.Z, which
is a contradiction. It follows that {fy%) | REN} must be infinite. Let
fi :NoN be a mapping (need not be injective or Increasing)
with a°fi=p. If N-f(N} is finite, then, clearly, (ax)& .2 by (SC
4) and finite case of (SC §). If N-A(N} is infinite, then there exists
a subsequence o °s: of a such that

afs(I)=afk), where k=minik | REN-{(N)}

asi(2)=u(k,), where k,=min{k | kE(N-HN))-{k:}}

a(Sz(n));a(kn), where k. =min{k | RENN-AIN))- (ke =, kaal}

Since (x)€ £* and o °s: is a subsequence of ¢, o.°s: converges
to x in (Xc,), ie, (@°s:,, )€ L and thus there exists f. in
{afsi%)) | REN} such that (B,,x)E€ .~ Let g : N>N be a mapping
such that aos,02=B, let s °&=f U (N-A(N)-f(N) is finite, then
(@es1,50€ L by (SC 4) and finite case of (SC 5), and therefore,
we have {(qx)€ .# by finite case of (SC 5). If (N-AN))-(N) is infinite,
we can continue with above process. Therefore, (o, x}&. by (SC
4) and (SC 5).

Case 2. [EEN| ((afk). »E L} is finite (2 6).
Then, let {k]_, kz,"', kn}:{keNl ((a(k)),x)e ./} and let k{):maX{kl,kz,"',
k.}, there exists a subsequence a°s of @ such that a(s(R))=afk.+k)
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for each 2EN. Since {#EN | ((alsR))x) € £ }=¢ by Case 1, we have
(aes x)e.z and therefore (ax)c £ by (SC 4)

Case 3. {RENI| (k) x)E £} is infinite.
If N-{REN | ((fk))x) € £} is finite, then, clearly, we have (ax)€ . by
(SC 4) and (SC 5). If N-{kEN | ((ak)x)& £} is infinite, then there
exists a subsequence a°s of a such that
a(s(l)=afky), where ki=min{k | kEN-{REN | ((ak)x)€ L
a(s(2))=alk:), where k:=minlk | RE(N-IkEN | (0B )€ L Y-k}l

a(s(n));a(kn), where k,=minfk | kEMN-IREN | (0D} E LD-{kikr, -,
kn~1}} :

Then, clearly, {RENI| ((a(s®ENOHE .£}=¢, and hence, by Case 1,
we have (a°s x)€ .7 Therefore, (ox)&.Z by (SC 4) and (SC 3).
The proof is complete.

Examle 3.9. Let © be the rational number set with usual topology.
Let /4 denote the set of all pairs (a,x)€S[Q1XQ such that a converges
to x in Q and let .Z={{(x)x) | x€QU{(ax)ES[QIXQ | a converges
to x in Q and « is either increasing or decreasing}.

Then we have (1) 4 and .£ are sequential convergence structures
on Q and (2) LL A==

Finally, we shall study relations between sequential convergence
structures on X and Frechet topolegies on X

By definitions of ¢, and Frechet spaces, the following will be
easily verified and hence we omit the proofs.

Theorem 3.10. (1) For each sequential convergence structure .2
on X, (Xc,) is a Frechet space.

(2) For each Frechet topology Z on X, =% and £ is also
a sequential convergence structure on X, where £ ={(ax)€S[XIX
Xila converges to x in X))}
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Corollary 3.11. Let FT{X] be the set of all Frechet topologies

on X and let SC*IX]={~-*|_# is a sequential convergence structure
on X}. Then, two partially orderes sets F7{X] and SC*[X] endowed
with the set inclusion order are dual-isomorphic under the corresponde-
nce I L.

-
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