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SEVERAL CONTINUITIES OF FUNCTIONS ON
CONVERGENCE SPACES®

Bu Young Lee

I. Introduction

The purpose of the present note is to introduce some new classes
of functions on convergence spaces, These classes contain the class
af continueus functions, For topolegical spaces, Levine, Noirn Papp,
Reilly, Vamanamurthy, and Singal ({8}, {9], {10], {11}, [12]. and
[13]) investigated some properties of these classes,

Kent ([4]) introduced a convergence structure on a nonempty set.
Kent and Richardson ([5], {6], and [7]} investigated some properties
of convergence spaces,

For a nonempty set S, F(S) denotes the set of all filters and P
(S) the set of all subsets of S. For each s€ S, § is the principal ultrafilter
containing {s}.

A convergence structure on S is defined to be a function ¢ from
F(8) mto P(S), satisfying the following conditions :

(1) for each s€S, seq(s) ;

(2) if ¢ and ¢ are in F(S) and $D ¢, then q()Dgq( d) ,

(3) if seq(), then seqg®Ns)

The pair (S.¢) is called a convergence space. If s€q(#), then we say
that ¥ g-converges to s. The filter V, (s) obtained by intersecting
all filters which g-converges to s is called the g-neighborhood filter
at s. If V;(s) g-converges to s for each s€S, then (S,q) is called a
pretopological space.

Let C(S) be the set of all convergence structures on S, partially
ordered as follows :@ ¢,<gq, if and only if ¢,(¥)Dg(¢), for all peF
(S).
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The set function [,:P(S)—>P(S) is defined on all subset ACS by
I'. (A)={s e Slthere exists an ultrafilter % g-converging to s with
" A€y,
I, is a closure operator in the topological sense, except idempotency.
The set function I,.P(S)—P(S) defined recursively for every subset
A of § as follows :

I,(A)={s€AlA€V, ()}

I, has all of the properties of a topological interior operator except
idempotency,

If ¢ is any filter on S, I, () (I,(¥)) is the filter generated by {7,
(B Fep}) ({I(F)|Fey} ).

A function f,_mapping a convergence space (S,g) onto a convergence
space {T.p), is said to be continuous if f(i) p-converges to f(s) whenever
¥ g-converges to s.

Let X be a nonempty set, (X,,q,) a convergence space, and for
each L€ A, f, a function X onto (X,,q,). The inttial convergence structure
¢ on X induced by the family {f,}Ac A} is defined to be a function
from F(X) into P(X) satisftying the following condition :

for each x€ X and p € F(X), x€q(¥) if and only if f, () g, -converges
to f,(x) for each A€ A.

Throughout the present paper, spaces always mean convergence
spaces and ( M1 X,,¢) the initial convergence space induced by
the family {P,lA€A, P,"fI X,—X, is the canonical projection}.
(ML X,.q) is called the product space of a family {(X,,q)ire 1}
of convergence spaces,

A space (S,q9) is said to be regular if I,(3) g-converges to s whenever

¥ g-converges to s.
2. 8- continuons funetions

A function f from a space (S,q) onto another space (T,p) is said
to be g-continuous-at a point s in § if I, (V, (f(s)))Cf(I, (%)) whenever
¥ g-converges to s f is said to be @g-conttnuous if { 1s g-continuous
at each s€S.
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Clearly, continuous functions are always g-continuous,
The following properties are easily verified,

Theorem 2.1. Let (T.p) be a pretopological space If f: (8,¢)—>(T,
p) and g:(T.p)—(R.,r) are g-continuous, then g- f s so.

Theorem 2.2. Let £:(S,q)—(T,p) be 9-continuous If (T,p) 1s a pre-
topological regular space, then f is continuous.

Lemma 2.3. Let (Il X,,q) be the prouct space of a famiy {(X,,
a,){r€ A} of spaces. Then for each x=(x,),,,€.I Xa,
(I)A{I‘Vq'x (x/\)cl/q’ (x):
(2) P.(V, (x) =V, (x,) for each A€ A where P, is the cawonical
projection.

Proof. (1) Let F be any element of M V. (x,). Then for

AEA

each 1€ A, there exists F, €V, (x) such that M F,CF
Suppose that [ F, &€ Ve (x), then there exists a filter ¢ g-converging
to x such that [l F, €. Therefore Pa(¥)q, —converges to x, for each
A€ A and there is a #€ A such that F, &P, (). But F, €V, (x).
Thus Fe V. (x).

{2) Since
,\{-7,4 t/'Q,\ (x/\) C%‘ (I), %‘\ (xA)CPA (I/:Z’ (x))

for each A€ A Let G, be any element of P, (V, (x)) for each p€
A, then there is Fe V.. (x) such that P, (F)CG,.. Let ¢ be a filter
which g, -converges to x, for each A&z Then I #, ¢'- converges to
1=(x,),.,. Since FeV, (x), FC {1 G,. Thus P, (F)€#, and G, €
#,. Therefore G. €V, (x,)

Lemma 2.4 (/7)) If f:(S.q)—(T.p) 15 continuous and ACS, then
(T, (A)CI, (ftA)).

Theorem 2.5. If {(S,¢)—>( I
g-continuous for each A€ A .

Proof. For each s€ 8, let ¢ g -converge to s, then, by Lemma
2.3 and 24,

X,.q) 1s g-continuous, then P,-f 15
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Ty (Vo () Cf (T (),
Fa, (Vau (P (f())))=Ta, (Px(V,. (f(3))))
C P (Te (Vo (F(5))))C Py (f (I ().

Thus P, - f is g-continuous.

Corollary 2.6. Let f:(S.q)—>(T.p) be a function and g:(S.0)—>(SXT,
r) gwen by g(s)=(s.f(s)), be us graph, where r is the product convergence
structure of q and p. If g 15 g9-continuous, then f is g-continuous.

A function f from a space (S,g) onto a space (T,p) is said to be
strongly g-continuous at a pomt s in S f V, (f{s))Cf(I,(¥)) whenever
¥ g-converges te s. f is called sirongly g-comdzmugus if it is strongly
g-continuous at each s€S§

Strongly g-continuous functions are always g-continuous,

Lemma 2.7 (/5}). If [:(S,q)—(T.p) is continuous, then f(Vy (s))CV,
(f(s)) for all s in S.

Theorem 2.8. Let f(S,q)—>(T,p) be strongly g-continuous.
(1) If (T.p) is a pretopological space, then f is contonuous.
(2) If g:(T.p)—>(R,r) 1s continuous, then g - f 1s strongly g-continuous.

Proof. (1) Clear.
(2) Let ¥ g-converge to s, then V, (f(s))Cf(I (#)) and g(V, (f(s)))
Cg(f(I,($))). Since g is continuous, by Lemma 2.7, V, (g(f(s)))Cg(V,
(f(s})). Thus g - f is strongly g-continuous.

Theorem 2.9. Let {:(S q)—=({I X, ,q%) be a function. Then f 1s strongly
g-continuous if and only if P, - f s strongly g-continuous for each L€ A.

Proof. Let % g-converge to s, then V_Af(s))Cf(T,(¥)). For each
A€ A, since P, is continuous,

Vo, (PU{fs))C P, (Ve (f()) SR (AT ).

Thus P, - f is strongly ¢-continuous,
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Conversely, let P, - f be strongly g-continuous for each A€ A and
¥ g-converge to s, then V,, (B f(s)))C P, (f(I3(#))). Suppose that
there is N e Vo (f(s)) such that N&f(I,(¥)). Then for each Feg,
since f(Io(F))XN, there exists x€ A such that P, (f(I, (F)))& P, (N).
And

B, (Ve (f(5)))= V4, (Pu(f(s))),
P (N)€ Vi, (B. ((s))).

Therefore £, (N)€ B, (f(I,(%))). Thus there exists ¥ €% such that P,
(f(L(F)))C P (N).

Corellary 210 Let f:(S,q)—(T.,p) be a function and g:(8,q)—>(SXT,
r) gwen by g(s)=(s,f(s)), be us graph Then [ 1s sirongly g-continuous
if and only if g 13 strongly g-continuous

Let (I X.,q")(resp. (L ¥, p’) be the product space of a family
{(X\.g.)1Ae A} (resp. {(Yy.p,)1A€ A} of spaces, For each A€ A,
[ /(Xaq )= (¥.0,) is a functon, [0 Xaq)—>(ZY.p) 1s the

function defined by f(x)=(f, (x,)) . for each x=(x,)...€ 0 X,
By Theorem 2.9, the following corollary is easily obtained.

Corollary 2.11. f ts strongly g-continuous of and only f @, - f s strongly
g-continuous for each A€ A, where Q, : 1Y, =Y, 15 the canonical
projection

Lemma 2.12. Iy, (1

AEA

F =0T, (F)

Proof. Let x=(x,), ., € U I (F, ), then x, €r,, (F, ) for each 4

A€A ALA

€ A. There exists an ultrafiiter ¥, on X, such that $, g, -conver
ges to x, and F, €4, Since ¢4 is an ultrafilter contamning I F,
and I $, q’-converges to x=(x,),.,» x€, (I E, ).

Conversely, let x=(x,),.. € (1 F, ), then there exisis an ul-

ALA

trafilter ¥ on [ X, such that $ g-converges to x and [I F ey

AEA

For each A€ A, P (¥) is an ultrafilter, P (¢) g -converges to
x,, and P, (I F, )=F € P, (). Therefore x, €r,, (F, ).

Afd
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Theorem 2.13. f, s strongly g-continuous if and only if f, - P, s
strongly g-continuous for each A€ A.

Proof. Let ¥ g’-converge to x=(x,),.,- then P, (¢) ¢, - converges
to x, for each A€ A.Since f, is strongly g-continnous and P, is con-
tinouous,

V, (f, (P, ))=V, (,(x, )T, (I, (P ($)))
CHAP, (T)))

Thus f, - P, is strongly ¢-continuous,
Conversely, let ¢, g, -converge to x, for each A€ A, then I ¥,

¢’- converges to x=(x,),.,. By Lemma 212,

Vo, (G )=V, (SAAPLe)f, (P (T« L #))

A&

= (P, (AT, & IN=F (Te (g).
Thus / is strongly g-continuous,

Corollary 2.14. f 15 strongly g-continuous if and only if f, s strongly
g-continuous for each A€ A.

Theorem 2.15. Let f(S,9)—>(T.,p) be continuous If (S,q) s a regular
space, then f is strongly @-continuous.

A space (S,q9) is said to be semi-regular if I (I ($)) g- converges
to s whenever ¥ g-converges to s. Clearly, every regular space is semi-
regular,

A function f: (S,q)—(T.,p) is said to be almost strongly g-continuous
at a point s€S§ if I (I, (V, (f(s)))) Cf(I,(¥)) whenever ¢ g-converges
to s. f is called almost strongly g-continuous if f is almost strongly ¢-
continuous at each s€ 8.

Almost strongly g-continuous functions are always ¢-continuous.

The following theorem is easily consequence of the above definition,



SEVERAL CONTINUITIES OF FUNCTIONS ON 131
CONVERCENCE SPACES

Theorem 2.16. Let (T,p) be a pretopological semi-regular space. If
£:(8,9) =(T.p) 1s almost strongly g-continuous, then f 1s strongly 8 -continuous.

3. d-continuous funciions and the others functions

A function f from a space (S,q) onto another space (T,p) is said
to be - continuous (resp. almost confinuous, weakly confinuous) at s€ 8
if £, (L (V, (DT, () (resp. L (L (V, (&I))CH®). T, (V,
(f(s)))Cf(¥)) whenever ¥ g-converges to s. f is called d-continuous (resp.
almost continuous, weakly continuous) if f is 6-continuous (resp, almost
continuous, weakly continuous} at each s€S.

By above defmitions, the following statements are easily obtained.

Theorem 3.1. (1) Almost strongly g-continuous functions are always
d-continuous end almost conlinuous
(2) Almost continuous functions are always weakly cortinuous
(3) g-continuous implies weakly continuous.

Theorem 3.2. Let f:(S,q)—(T,q) and g:(T.p)—>(R,r) be two J-con-
tinuous If (T.p) s a pretopological semi-regular space, then g - f 1s -
COREIUOUS.

Proof Lel ¢ g-converge to s, then I, (I (V, (f(s)))CFI (T, (#))).

Since (7.p) 1s a pretopological semi-regular space, I, (I}, (V, (f(s))))
p-converges to f(s). Thus

LUV, (g(f(s)))) gl (T (V, (f(s)))
Celfd, (I, )

Theorem 3.3. Let (T,p) be a pretopological space If f.(S,q)—>(T,
p) s strongly g-continuous and g-(T.p)—(R,r) 1s almost continuous, then
g - [ is almost strongly g-continuous

Proof. Let ¢ g-converge to s. Since (T p) is a pretopological space
and f i3 strongly g-continuous,

LAV, @f(sNNCe(V, ()N Ce(FI )
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by almost continuity of g Thus g - f is almost strongly g-continuous,

Theorem 3.4. Let (S,q) be a semi-regular space. If £:(S,q)->(T.p)
15 almost continuous, then f 1s &-continuous.

Proof. Let ¢ g-converge to s, then I (I, ($)) g-converges to s.

A function f:(S,q)—>(T,p) is said to be super continuous at s€ 8 if
V, (f()) T, (I, (¥))) whenever % g-converges to s. f is called super
continuous if f is super continuous at each s€S.

The following properties are easily obtained by definitions.

Theorem 3.5. (1) Let (T.p) be a pretopological space. If f(S,q)—
{T'p) is super continuous. and g:(T,py—>(R,r) 1s continuous, then g- f 18
siper continious

(2) If 1(8.,9)—=>( H Xa.q") is super continuous, then P, - f is also super
continuous for each L€ A,

(3) Let {:(8,¢)—>(T.p) be a function and g.(S,q)—(SXT,r) given by
8(s)={s,f(s)}, be us graph. If g is super continuous, then f is super continuous.

Theorem 3.6. If f:(S,q)—(T,p) is ¢-cntinuous and {T.p) is a preto-
pologwcal semi-regular space, then f is super continuous

Theovem 3.7. Let (T.p) be a pretopological regular space and f(S,
a)—>(T,p) be o function.
(1) If [ 15 g-continuous, then f is strongly g-continuous.
(2) If f 15 weakly continuous, then f is continuous
(3) If f s almost continuous, then f 1s continuous.

Since a regular space implies a semi-regular space, by Theorem
2.8, 2.16, 3.1, and 37, the following properties are easily verified,

Theorem 3.8. Let f(S,q)—(T.p) be a function and (T,p) be a pre-
topological regular space Then
(1) If [ s almost strongly g-continuous, then [ is continuous.
(2) Further, the following statements are equvalent ,
(@) f is continuous.
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(b) [ s g-continuous.
{¢) f s strongly g-continuous
(d) [ 15 weakly continuous.
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