SOME RESULTS ON FLSTER THEORY OF BCK-ALGEBRAS

Jung Wan NAM and Young Bae JUN

1. Introduction and preliminaries

K. Iseki [2] has introduced the notion of a BCK-algebra which is an algebraic formulation of a propositional calculus. In his various papers, Iseki studied the structure of these algebras(see[3], [4], [5]). Also E. Y. Deeba [1] introduced the notion of filters, and studied their basic properties. In this paper, we obtain an equivalent condition and property of F-ascending chain condition, and also some properties of irreducible filters in a BCK-algebra.

In [1], Deeba has defined a filter as follows :

Definition. A non-empty set \mathbf{F} of a BCK-algebra X is called a filter of X if

(1) $x \in F$ and $x \leq y$ imply that $y \in F$, (2) $x \in F$ and $y \in F$ imply that $glb \{x, y\} \in F$.

Let x be a bounded implicative BCK-algebra and F a filter of X. Define a relation \sim on X as follows : $x \sim y$ if and only if $1^*(x*y) \in F$. $1^*(y*x) \in F$ Then \sim is an equivalence relation on X, and so X can be partitioned in to equivalence classes. The class containing $x \in X$ will be denoted by Fx It is clear that $x \sim y$ and only if $F_x = F_y$. Denote the set of all such equivalence classes by X/F. Define a binary operation o in X/F as follow : $F_x \circ F_y = F_{x*y} \cdot F_y$ further we write $F_x \leq F_y$ if and only if $x*y \sim 0$. Then $(X/F; \circ, F_0)$ is a BCK-algebra.

Received May 9, 1989.

2. Main results

Lemma 2.1. Let $f: X \rightarrow X'$ be a homomorphism of BCK-algebras. If F' is a filter of X', then $f^{-1}(F')$ is a filter of X

Proof Let $x \in f^{-1}(F')$ and assume that $x \leq y$ Then $f(x) \in F'$ and $f(x) \leq f(y)$ Since F' is a filter of X', we have $f(y) \in F'$. It follows that $f^{-1}(f(y)) \in f^{-1}(F')$, and hence $y \in f^{-1}(F')$ Next, let $x, y \in$ $f^{-1}(F')$. Then we have $f(x), f(y) \in F'$. Since F' is a filter and f is isotone, we have $f(glb\{x, y\}) = glb\{f(x), f(y)\} \in F'$. It follows that $glb\{x, y\} \in f^{-1}(F')$. This completes the proof.

Theorem 2.2 Let $f: X \to X'$ be an epimorphism of BCK-algebras. If F' and G' are distinct filters of X', then $f^{-1}(F')$ and $f^{-1}(G')$ are also distinct filters of X.

Proof. It follows from Lemma 2.1 that $f^{-1}(F')$ and $f^{-1}(G')$ are filters of X. Note that $f(f^{-1}(F'))=F'$ if f is surjective suppose that $f^{-1}(F')=f^{-1}(G')$. Then we obtain $F'=f(f^{-1}(F'))=f(f^{-1}(G'))=G'$, a contradiction. Hence $f^{-1}(F')$ and $f^{-1}(G')$ are distinct filters of X.

Definition 2.3. Let X be a BCK-algebra. We shall say that X satisfies the F-maximal condition if every non-empty set of filters of X has a maximal element.

Definition 2.4. A BCK-algebra is said to satisfy the F-ascending chain conition if each ascending chain of filters $F_1 \subseteq F_2 \subseteq \cdots \subseteq F_k \subseteq \cdots$; terminates after a finite number of steps.

Teorem 2.5. Let X be a BCK-algebra. Then the followings are equivalent :

- (1) X satisfies the F-maximal condition.
- (2) X satisfies the F-ascending chain condition.

Proof. Suppose that X satisfies the F-maximal condition, and let $F_1 \subset F_2 \subset \cdots$ be an ascending sequence of filters of X. Then the set $\{F_1 : i=1,2,3,\cdots\}$ of filters has a maximal element $F_n \cdot$ Hence we have $F_1 = F_n$ for all $i \ge n$, that is, X satisfies the F-ascending

chain condition. Conversely, assume that X satisfies the F-ascending chain condition. Let \bigtriangledown be a non-empty set of filters of X and suppose that \bigtriangledown has no maximal element. Take F_1 in \bigtriangledown . Since F_1 is not maximal, there exists a filter F_2 in \bigtriangledown such that $F_1 \subseteq F_2 \cdot$ Repeating this argument we obtain an infinite ascending sequence $F_1 \subseteq F_2 \subseteq \cdots$ of filters, a contradiction. Therefore X satisfies the F-maximal condition.

Theorem 2.6. Let X be a bounded implicative BCK-algebra. If X satisfies the F-ascending chain condition, then every quotient algebra of X by filter satisfies the same F-ascending chain condition.

Proof. Let F be a filter of X and $F'_1 \subset F'_2 \subset F'_3 \subset \cdots$ an ascending sequence of filters of X/F. Since $p: X \to X/F$ is the canonical epimorphism, $\{p^{-1}(F'_1)\}$ is an ascending sequence of filters of X. Since X satisfies the F-ascending chain condition, there is a natural number m such that $p^{-1}(F'_m) = p^{-1}(F'_i)$ for all $i \geq m$. The fact that p is the canonical epimorphism implies $F'_1 = F'_m$ for all $i \geq m$. Therefore X/F satisfies the F-ascending chain condition.

Definition 2.7. A filter F of a BCK-algebra X is said to be irreducible if $F=G\cap H$ implies F=G or F=H for filters G, H

Proposition 2.8. If F is a filter in a BCK-algebra X, and x is not contained in F, then there is an irreducible filter G such that $F \subseteq G$ and $x \notin G$

Proof. See[8, p. 6].

Proposition 2.9. Let F be a filter in a BCK-algebra X. If, for any x, y of X-F, there is an element z of X-F satisfying $x \le z$ and $y \le z$, then F is irreducible.

Proof. See[8, p. 6].

Theorem 2.10. Let X be a BCK-algebra satisfying the F-ascending chanin condition. Then every filter in X can be written as the intersection of a finite number of irreducible filters.

Proof. Let \bigtriangledown be the set of all filters of X, which cannot be written as the intersection of a finite number of irreducible filters. If the theorem is false then \bigtriangledown is not empty. Since X satisfies the F-ascending chanin conditon, \bigtriangledown has a maximal element, say F. Then F is not irreducible. Thus we have $F=G\cap H$ for filters G and H in X such that $F\subsetneq G$ and $F\subsetneq H$. However then G and H are not in \bigtriangledown . Hence G and H can both be written as the intersection of a finite number of irreducible filters, and the same is true for F, which is a contradiciton. This completes the proof.

Lemma 2.11 [1]. If F_{α} , $\alpha \in I$, is a totally ordered family of filters of a BCK-algebra X ordered by inclusion, then both $\bigcup F_{\alpha}$ and $\bigcap F_{\alpha}$ are filters of X.

Theorem 2.12. Let A be an ideal of a BCK-algebra X. If F is a filter containing A, then F contains a filter which contains A and has no smaller filter containing A.

Proof. Let \bigtriangledown_A be the set of all filters which contain A and are contained in F. The $F \in \bigtriangledown_A$, and so \bigtriangledown_A is not empty. We write $F' \leq F''$ if $F'' \subset F'$ for all $F', F'' \in \bigtriangledown_A$. This gives a partial order on \bigtriangledown_A . We claim that \bigtriangledown_A is an inductive system. For this purpose, let \bigtriangledown_A' be a non-empty totally ordered subset of \bigtriangledown_A . By Lemma 2.11 the intersection of all filters of $\bigtriangledown_{A'}$ is a filter, say G. This certainly contains A and is contained in F. Consequently $G \in \bigtriangledown_A$. Since $G \subset F'$ for every $F' \in \bigtriangledown_{A'}$, we have $F' \leq G$ for every F' in \bigtriangledown_A . Thus G is an upper bound for $\bigtriangledown_{A'}$. Hence \bigtriangledown_A is an inductive system. Then by Zorn's Lemma \bigtriangledown_A has a maximal element, say F^* , and hence $A \subset F^* \subset F$. Suppose that F^{**} is a filter with $A \subset F^{**} \subset F^*$.

Then $F^{**} \in \nabla_A$ and $F^* \leq F^{**}$, and so $F^* = F^{**}$ by the maximality of F^* . This completes the proof.

References

- 1. E. Y. Deeba, Filter theory of BCK-algebras, Math. Japonica 25(1980), 631 -639.
- K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42(1966), 26-29.

122

- K. Iséki, Some properties of BCK-algebras, Math. Seminar Notes, 2(1976), 193-201.
- 4. ____, Remarks on BCK-algebras, Math. Seminar Notes, 3(1975), 45-54.
- 5. ____, On ideals in BCK-algebras, Math. Seminar Notes, 3(1975), 1-12.
- 6. K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math Japonica, 21 (1976), 351-366.
- 7. An introduction to the theory of BCK-algebras, Math. Japonica $\overline{23(1978), 1-26}$.
- 8. Y. B. Jun, Some remarks on BCK-algebras, J. of Gyeongsang Nat. Univ., 27(1) (1988), 1-7.

Gyeongsang National University Jinju 660-701, Korea