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RANGE THEOREMS FOR ACCRETIVE
OPERATORS IN BANACH SPACES

Jong Soo Jung

1. Introduction

Let E be a real Banach space with norm |l - I, An operator ACE
XE with domain D{A) and range R(A) is said to be accretive if
Hor—x =l g, —x4+r(v,—y) | for ali »€ Ax,,i= 1.2 and 7> 0
An accretive operator ACEXE is said to be m-accretive if R(I+
AA)=FE for all A>>0, where [ is the identity operator,

The following theorem was given by Kartsatos in [3] :

Theorem. A. Let X, X* be uniformly convex. Let T be an m-
accretive operator with D(T') containing zero. Moreover, let

WT0) Yl <r<liminf =UTx]

XeNT

where r 15 a positwe constant. Then B (0)={x€ E |l x i <r}CR(T).

This result of Kartsatos was an extension of Lange’s result in case
that £ is a Hilbert space {cf. [3]). In proof of this result, existence
theorems for ordinary differential equations with accretive mappings
in Banach spaces were used,

In this paper, we extend Theorem A to more general case by using
the fixed point property for nonexpansive self-mappings. Qur proof
is simpler than that of [3] on account of using Banach limits.

2. Prelminaries

Let E be a real Banach space and let E* be its dual. Let U={x
€E. |l x li=1} be the unit sphere of E. The norm of E is said to
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be Gateaux differentiable (and E is said to be smooth) if

ﬁmllx—l—tyll—ll x|l

—a t

exists for each x, y € U. It is said to be uniformly Fréchet differentiable
(and E is said to be uniformly smooth) if this limit is attained uniformly
for (x, ) in UXU. It is well known that the dual E* of E is uniformly
convex if and only if the norm of E is uniformly Frechet differentiable,

The value of x"€¢ E* at x€E will be denoted by (x, x*). With
each x€ E, we associated the set

Jx)y={x* € E". (x, x*)=Il x II>=1l x* li?}.

Using the Hahn-Banach theorem. it is immediately clear that J(x)
* ¢ for any x€ E. The multi—valued operator J: E—E" is called the
duality mapping of E. It is well known that if £ is smooth, then
J is single valued,

Let K be a subset of E. then we denote by 6(K) the diameter of
K. A point x€ K is a diametral point of K provided

sup{ll x—y Il :ye K}= &(K)

A closed convex subset C of a Banach space E is said to have normal
structure for each closed bounded convex subset K of C, which contains
at least two points, there exists an element of K which is not a diametral
point of K. Banach space E is said to have normal structure if any
bounded, convex and closed subset of the space has normal structure.
All uniformly convex Banach spaces have normal structure, It is also
known that all uniformly smooth Banach spaces have normal structure.
(cf. [2, p.d5]).

Let C be a closed convex subset of E. Then C is said to have the
fixed point property for nonéxpansive self-mappings if for every non-
expansive mapping T :C—C, there is a point p€C such that T(p)
=p. Kirk [4] proved that if E is a reflexive Banach space and C
is a bounded closed convex subset of E having normal structure, then
C has the fixed point property for nonexpansive self-mappings.

The closed convex hull of subset B of E will be denoted by
clco(B)
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Recall that an operator ACEXE 1s accretive if and only if for each
1 E€D(A) and y € Ax, =12, there exists j€J{(x;—x;) such that (y,
—y,, 1)=0. if A Is accretive, we can define, for each positive r, the
resolvent of A, Jy:R(I+rA)—~D(A) by J=(1+rA)" and the Yosida
approximation of A, A;:R{(I+rA)—R(A) by Ar=(l{r){I-J.). We
know that A;x€ Adyx for every x€ R(I4rA) and that Il Ax 1< | Axl
for every x€ D(A)NR{I+rA), where {Ax| =inf{ll y Il :ye Ax}(ef.
[1]). We also know that if D(A)C R(I+rA) for each r > 0, then
A70=F(J;), where F(J.) is the set of fixed points of J;

Finally, we mention that a Banach limit LIM is a bounded linear
functional on {” of norm 1 such that

hm"_"gf tn = LIM tn = ﬁl!ll_i}:p ln

and
LIM tr=LIM tra

for all {¢,} in /™. Let {x,} be a bounded sequence of E. Then we
can define the real valued continuous convex function ¢ on E by

¢ (2)=LIMIl x,—2z |l
for each z€ E.

3. Main results

We now prove a theorem which extends Theorem A to more general
case,

Theorem.  Let E be a reflexive Banach space with normal structure,

Let ACEXE be an m-accretwe operator. Assume that for some xo€ D(A)
and r>0

| Ax,| <rgl&gﬁggflel

XEIKA

Then Bi(0)={xe E: It x | <r}CR(A)

The proof of theorem follows from the following Lemma,
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Lemma. Under the assumption of Theorem,
B, (0)CR(A), where p=(r—| Ax,})/2.

Proof. Without loss of generality, we may assume that x=0.
In fact, we may replace A by A” given by Ax=A(x+=x, for each
x€ D(A")=D(A)—x,. Let pe B,(0), where p=(r—|40])/2.
Then since A is m -accretive, there exist (x, v,) € A such that

xntnyn=np or (1{n)x+ya.=p, n=12,-".

We show that {x,} is bounded. For any y,€ A0, since A is accretive,
there exist j, € J(xz—0)=J(x,)} such that

e N 5, 12, j )= Yo I)+ (V. fn)+% (%, Jp)
2 (v, ju) - I 2o 1
so, it follows that
Z Wz S p 1 1, = (0, S (Ip H41 yo M), 0
and hence
Iz i<l p i+ A0

Assume that lm_ |l x,, {|=co for some subsequence {x,} of {x.}.
Then

r = lim inf [Ax| < lim inf JAxn, | S m enf {1y, ||

Nxlf ~<0
xrepin

Thus, for any & >0, there is a positive integer N(¢) such that
oyn, I 2r— €, for every k> N(g).
Consequently, for any 2> N(e),

1
r=llpll—e =y, I-llpil<ity, —p ||=n—Jn Hoxp, I
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<l p Il +] A0}

Since €>0 is arbitrary, we have
|AO) =r—2Il p I >r—2u=|A0].

This is a contradiction. So, {x,} is bounded, and hence y,—p.
Now let Ax==Ax~—p, for each x€ D(A). Then 4, is m—accretive and

R{I+Aq) Neleo(D(Ag) )=clco(D(A)).

We also have that (x,, y,—p) € Ao Let C=clco(D(A)). For a Banach
lmit, define ¢ : C—R by

for each z€C and r=uf{ 4 (z) : ze C }. Then since the function ¢
on C is continuous convex, ¢(z)—oo as Il z ll—oo, and £ is reflexive,
there exists v€ C with ¢(v)=r. Let K={ve C:¢(v)=r}. Then it follows
that K is nonempty, bounded, closed and convex.Let ve K and JA
= (I+A,)". Then J* is a nonexpansive mapping from R(I+ Ao)
to D(A,))=D(A). We also have

LIMI xn—J e v | SLIMH x,—J2ox, 1 +LIMI xa—v |

SLIM 1Agtai+ LIMltx,—o Il
SLIM It y,—p I4+LIMI 2o—v 1)
=LIMIl z,—v!].

where | Agx} =inf{ll y Wl :y€ Ayx,} Therefore K is invariant under J,A°
Since K has the fixed point property for nonexpansive mappings,
there exists ve K with JA y=v. This implies 0€ Ay.
Thus we obtain p € Av, which proves B, (0)CR(A).

proof of Theorem. Let ye€ B.(0) and let

M={te[0, 1] -tye R(A)}.

Then by Lemma, M¥* §. We complete the proof of by showing I € M.
Let ty=supM. Choose t,€ M such that t.<t, and t,—f, and then take
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1. € D(A) with f,y€ Ax,. Define A,CEXE by
Anx=A(x+x,)— oy
for any x€ D(An)=D(A)~—x, Then 0€ A,0 and

lim wnf [Anx| Zr—tall v Il >0.

XED (Ap)

In fact, we have
| Anx| = wnf ()l 21l :2€ Anx}=nf{Ilw—t.y 1| s wE A{x+x,)}
2mf{ltwll ;weA(xtxa)}—tall y i
= [A(xtxa )| —tall ¥ i

for any x€ D(A.) and hence

lim inf | Anxl 2 1 nf 1A (x+xa) | —tall y 1
xZD(il”) XEXAp)
— lim inf |Ax | —tall y H=r—t0l y 11,

Il wroo
XEDIA)

By Lemma, B, (0)CR(An), where pn=(r—t,l y 1)/ 2.
On the other hand, if ¢=¢ is close enough to i, it is possible to select
n so that

(t—t)ll y IS (r—tall v H)/2.
So, from Bu,(0)CR(A.), there exists z,€D{A,) such that (¢—f)y€

Anzn, that i8 ty€ Anzn+ thy=A(2n + x,.). Hence t€ M. This implies
t,=1€ M, which proves that B.(})CR(A).

As a direct consequence of Theorem, we have the following interesting
corollaries,

Corollary 1. Under the assumption of Theorem, if
lim trf | Ax|==c0,

Hxll —e
XEKA)
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then R(A)=E.
Proof. B(0)CR(A) for every r>0
Corollary 2.  Assume that E is as in Theorem. Let A be an
m—accretive operator. Assume that for some x,€ D(A), yo€ Ax, and 7,
$>0,
r< uf |Az—y,
Nx-xllzs
XEDIA)

where |Ax—yo|=wnf{|l y—y, ! :y€ Ax} Then B.(yo)C A(Bs(x) N D(A}).
Proof.

We consider the operator A’x=A{(x+x,)—y, for any x
€D(A")=D(A)—x,. Then A" is m-accretive on D(A’) and 0€ A0
Moreover,

iminf 1AXl = anf )| Aul = inf AT
llzli—-cf HuHlHzs HX-zoll2z S
xEMA") ZEWA' xXEDIS)

=r>1470).

Theorem implies now that B.(0)CR(A’), which is equivalent to B-{¥)
CR(A). Let yeB,(y,) and u€D(A) such that y€ Au and assume
that |lu—x,1l=s. Then

r= anf 1Ax—y = Ily—yl,
Ux-xot) 23

XEDA)

a contradiction to y € B,(y,). Thus u € Bs(x,) and the proof is complete,
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