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ON IDEALS OF ENDOMORPHISM RING OF 
PROJECTIVE MODULE

Soon-Sook Bae

0. Introduction

The object of the paper is to study the relationship between sub
modules of projective module and ideals of endomorphism ring of 
projective module. In a projective module RM if RAf has a small 
submodule, then the endomorphism ring End (RM) has a small left 
ideal. If RM has the largest submodule, then End(RM) is a local 
ring.

Throughout 나lis paper, every ring is an associative ring with identity 
and every module is a left module. For an element a in a ring R, 
'(a) means the left ideal generated by a, in fact, 1(a)=Ra+Za. The 
ring of 1?- endomorphisms of a left R-module rM, denoted by End 
(rM), will be written on the right side of M as right operators on 
M, that is, rMend(rm)will be considered in this paper. For mappings 
f: MrN, g: N—L, the composition mapping f • M—^L will be written 
by fg in order. Imf is denoted by the image of f*

1. Results

For a submodule L of a module r血，consider the set of all 
endomorphisms whose images are contained in L, then the zero 0 
is in A, which says that A is not empty. For each f, 1匕 Im(f-hg)

Img三L+LWL and for any h in End(RM), Im(hg)VImg三上 
so we have a left ideal ZL.

Propertie 응 1.

(1) For any left ideal I of End(RAf) let L= 52 Imf, 난len I冬 A fei
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(2) If L 三乙2三 M, then A1 < in End(RM)
(3) P^—Endi^M) and 7°=0
(4) For submodules L^(aeA) of RM, I(~}a La=aO7La

and 疽沾a
a^A

Definition 2. A submodule L of an 7?-module RM is said to be 
fully invariant if every endomorphism on sends L into L.

Not all submodule of a module need not be fully invariant for example, 
0®{0, 2} is not fully invariant of Z&O And{Q 2) is a fully invariant 
submodule z*

Proposition 3. If L is a' fully invariant submodule of rM, then 
四 is a both sided ideal of EndJ血)

Proof. If suffices to prove that A is right sided ideal. Let / € ZL 
and gCEndQM) be arbitary given, then Im(fg)=(Im，f)gWLgJL Since 
L is fully invariant, which tells that fgeA.

Remark 4. Every left ideal I of EndQM) has a fully invariant 
submodule Q {Ker I). Since for each xe A{Ker/|7fel}, xf=O for 
every fe Z, and 아if=0 for all Ae End(RM) because / is a left sided 
ideal. Hence xh is contained in D(Ker/|/e I}.

Let ij be the multiplication by j on Z4, then 句 becomes an endo
morphism of Z4. For a submodule {Q 2} of Z4 which is fully invariant, 
we obtain a both sided ideal ?{姑 功

For fully invariant submodules L^(ae A) of RM, their sum WL& 
and intersection A {Lal A} are also fully invariant.

It may happen to exist distinct submodules Ln of RM such that 
四。=产(for example, in the set of real numbers as a Z-module, the 
set Q of rational numbers and the 용et Z of integers are such 
submodules, i, e, 7Q=72=^\ then we are going to take L as their 
intersection E.

Generally, if 及。="(0 € A), then L will be regarded as the intersection
{乙시 laeA}. From now on, in L means the least submodule of 

rM which induces a left ideal A.
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A left R -module M is said to be projective if for any exact sequence 
and for any homomorphism f: M-^N there is an R -homomorphism 
h ■ M—兀 such that diagram commutes.

L---------- ------- >N------------------- 2

A submodule L of a left module M is said to be small (or superfluous) 
if for every submodule L+K—M implies K=M.

Lemma 5. Every epimorphism of End(RM) is left invertible if 
rM is projective.

Proof This is easily followed by the proposition 5, p83 in [1],

theorem 6. If a submodule M is small, then the left ideal P 
is small in End(M).

Proof. We need only consider all left ideals of End(M). 
Suppose I is a left ideal of End(Af) such that IL+I=End(M).

Then the identity 1 of End(Af) can be written as a sum of fel 
16 7L, that is Thus By
hypothesis, L is small which implies Thus 匕 is an epimorph
ism which is in I. By Lemma 5, i is left invertible, whence I=End(M).

Let M be a left module. Then the radical of M, ([2])
RadM^ {K^M\ K is maximal in M}

=^{L<M \L is small in M}

Theorem 7. If a projective module M has the largest submodule 
L, then End(M) is a local ring, and M has a small submodule.

Proof From 나le fact that L is largest in 虬 every homomorphic 
image of non -epimorphism is contained in L, Let J be any ideal of 
End(M) such that J^End(M), 난len for each fej, Imf^L so that 
fwH. Hence This implies A is the largest left ideal of End 
(M). By Proposition 4 in [1] on p57, and Corollary on p58, 난坦 radical 
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of End(M) is " which i a both sided ideal, since the largest ideal 
is a maximal ideal in a ring. Now it remains to show that M has 
a small submodule. Since radM==L^=sum of small submodules of M 
and since a sum of submodules in an empty set is zero, thus there 
is at least one small submodule.

Theorem 8. In a projective module if A is a homomorphic 
image of endomorphism, then the left ideal 卩 jg principal.

Proof. Let L~Imf for f in End(M). If ge", then bngWImf=L. 
Considering a diagram

,M

g

M--------- -------->Imf-------------------*0

there is an R - homomorphism h : M-^M such that g=hf
This means 7L=1(/).

Corollary 9. In a projective module M, if L is a fully invariant 
submodule which is an image of an endomorphism.

Then a both sided ideal A is principal in End(Af).

Proof. By Proposition 3, A is a both sided ideal. Hence P= 
(f) in End(M).
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