Pusan Kyöngnam Mathematicat Journal Vol 5, 69-80, 1989

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

Man Dong Hur and Ge Hwan Oh

1. Introduction

Let A denote the class of functions of the form

$$f(z) = +\sum_{n=0}^{\infty} a_n z^n \tag{1.1}$$

which are analytic in the unit disk $U = \{z \mid z \mid < l\}$ And let S denote the subclass of A consisting of analytic and univalent functions f(z) in the unit disk U

A function f(z) in S is said to be starlike of order α if

$$Re\left\{\frac{zf(z)}{f(z)}\right\} \approx (z \in U)$$
(1.2)

for some $\alpha(0 \le \alpha < 1)$ We denote by $S^*(\alpha)$ the class of all starlike functions of order α . Furthermore, a function f(z) in S is said to be convex of order α if

$$Re\{I + \frac{zf''(z)}{f'(z)}\} > \alpha \ (z \in U)$$

$$(1.3)$$

for some $\alpha(0 \le \alpha < 1)$ And we denote by $K(\alpha)$ the class of all convex functions of order α .

It is well known that $f(z) \in K(\alpha)$ if and only if $zf'(z) \in S^*(\alpha)$, and that $S^*(\alpha) \subseteq S^*(\alpha) \equiv S^*$, and $K(\alpha) \subseteq K(\alpha) \equiv K$ for $0 \leq \alpha < 1$

These classes $S'(\alpha)$ and $K(\alpha)$ were first introduced by Robertson ([6]), and later were studied by MacGreger([4]) and Dinchuk([5]).

Received Mar. 5, 1989.

Let (f*g)(z) be the convolution or Hadamard product of two functions f(z) and g(z), that is, if f(z) is given by (1.1) and g(z) is given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n \tag{1.4}$$

Then

$$(f * g)(z) = \sum_{n=2}^{\infty} a_n b_n z^n$$
 (1.5)

Let T denote the subclass of S consisting of functios f(z) whose nonzero coefficients, from the second on, are negative. That is, an analytic function f(z) is in the class T if it can be expressed as

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \ (a_n \ge 0)$$
 (1.6)

and let $T^*(\alpha) = T \cap S^*(\alpha)$, $C(\alpha) = T \cap K(\alpha)$.

The class $T^*(\alpha)$ and related classes posses some very interesting properties and have been studied by Silverman([9]) and others. Also, Gupta and Ahmad([2],[3]) introduced the subclasses of T and obtained some of the results of Silverman([9]) for the class $T^*(\alpha)$ and $C(\alpha)$.

For a function f(z) in S, we define

$$D^{o}f(z) = f(z) \tag{1.7}$$

$$D'f(z) = Df(z) = zf'(z), \text{ and}$$
(1.8)

$$Df(z) = D(D^{-1}f(z)) \quad (j=1,2,\cdots).$$
 (1.9)

The differential operator D^{i} was introduced by Salagean ([7]).

With the help of the differential operator D', we say that a function f(z) belonging to T is said to be in the class $T(y,\alpha)$ if and only if

$$Re\{\frac{D^{\mu}f(z)}{D^{\mu}f(z)}\} > \alpha \quad (j=0,1,2,\cdots)$$
(1.10)

for some $\alpha(0 \le \alpha < 1)$, and for all z in U.

70

In particular, the class $T(0,\alpha)$ and $T(1,\alpha)$ was studied by Silverman ([9]).

In the paper, we investigate coefficient estimates and distortion properties for the class $T(j,\alpha)$ Furthermore, we prove that the class $T(j,\alpha)$ is closed under convex linear combinations. Also, we generalize some results of Silverman ([9]) and Schild and Silverman ([8]).

2. Coefficient estimates

Theorem 2.1. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. If $\sum_{n=2}^{\infty} n^i (n-\alpha) a_n < 1-\alpha$, then $Re\{\frac{D^{i+1}f(z)}{D^i f(z)}\} > \alpha(j=0,1,2,\cdots)$

Proof It suffices to show that the values for

 $\frac{D^{r+1}f(z)}{D^{l}f(z)}$ hes in a circle centered at w=1 whose radius is $1-\alpha$ We have

$$\frac{D^{i}f(z)}{D^{j+1}f(z)} - 1 = \left| \frac{D^{i}f(z)}{D^{j+1}f(z) - D^{j}f(z)} \right|$$
$$= \left| \frac{\sum_{n=2}^{\infty} (n^{j+1} - n^{j})a_{n}z^{n}}{z + \sum_{n=2}^{\infty} n^{j}|a_{n}||z|^{n}} \right|$$
$$\leq \frac{\sum_{n=2}^{\infty} n^{j}(n-1)|a_{n}||z|^{n-1}}{1 - \sum_{n=2}^{\infty} n^{j}|a_{n}||z|^{n-1}}$$
$$\leq \frac{\sum_{n=2}^{\infty} n^{j}(n-1)|a_{n}|}{1 - \sum_{n=2}^{\infty} n^{j}|a_{n}|}$$

This last expression is bounded above by $1-\alpha$ if

$$\sum_{n=2}^{\infty} n^{\mathbf{j}}(n-1) \left| a_{\mathbf{n}} \right| \leq (1-\alpha) (1-\sum_{n=2}^{\infty} n^{\mathbf{j}} \left| a_{\mathbf{n}} \right|)$$

which is equivalent to

$$\sum_{n=2}^{\infty} n^{i}(n-\alpha) |a_{n}| \leq l-\alpha \qquad (2.1)$$

But (2.1) is true by hypothesis. Hence $\left|\frac{D^{r+1}f(z)}{D^rf(z)}-1\right| \leq 1-\alpha$, and the theorem is proved.

The following theorem give a necessary and sufficient condition for a function to be in $T(j,\alpha)$.

Theorem 2.2. A function $f(z) = z - \sum_{n=2}^{\infty} a_n z^n$ is in $T(j, \alpha)$ if and only if

$$\sum_{n=2}^{\infty} n^{i}(n-\alpha)a_{n} \leq 1-\alpha.$$
(2.2)

Proof In view of theorem 2.1, it suffices to show the only if part. Assume that

$$Re\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\right\} = Re\left\{\frac{z-\sum_{n=2}^{\infty}n^{n+1}a_nz^n}{z-\sum_{n=2}^{\infty}n^{n}a_nz^n}\right\} > \alpha(|z| < 1).$$
(2.3)

Choose values of z on the real axis so that $\frac{D^{p+1}f(z)}{D^{l}f(z)}$ is real. Upon clearing the demominator in (2.3) and letting $z \rightarrow 1$ through real values, we obtain

$$l - \sum_{n=2}^{\infty} n^{\mu_1} a_n \ge \alpha (1 - \sum_{n=2}^{\infty} n^1 a_n)$$

Thus $\sum_{n=2}^{\infty} n^i(n-\alpha)a_n \le 1-\alpha$, and the proof is complete. Further, the equality in (2.3) is attained for the function f(z) given by

$$f(z) = z - \frac{1 - \alpha}{n^{2}(n - \alpha)} z^{n}(z \ge 2).$$
(2.4)

Using the Theorem 2.2, we have the following.

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

Corollary 2.3. $T(j+1,\alpha) \subset T(j,\alpha)$ for $j=0,1,2,\dots$ and $0 \le \alpha \le 1$.

Corollary 2.4. Let the function f(z) defined by (1.6) be in the class $T(j,\alpha)$, then

$$a_{n} \leq \frac{1-\alpha}{n'(n-\alpha)} \ (n \geq 2) \tag{2.5}$$

3. Distortion Theorems

Using the result obtained in Theorem 2.2, we prove

Theorem 3.1. If $f(z) \in T(j,\alpha)$, then

$$r - \frac{1 - \alpha}{2^{i}(2 - \alpha)} r^{2} \le |f(z)| \le r + \frac{1 - \alpha}{2^{i}(2 - \alpha)} r^{2} (|z| = r)$$

with equality for the function $f(z)=z-\frac{1-\alpha}{2^{l}(2-\alpha)}z^{2}$. *Proof.* Note that

$$2^{\mathfrak{g}}(2-\alpha)\sum_{n=2}^{\infty}a_{n}\leq\sum_{n=2}^{\infty}n^{\mathfrak{g}}(n-\alpha)a_{n}\leq 1-\alpha.$$

This last inequality follows from Theorem 2.2. Thus

$$\left|f(z)\right| \leq r + \sum_{n=2}^{\infty} a_n r^n \leq r + r^2 \sum_{n=2}^{\infty} a_n \leq r + \frac{1-\alpha}{2!(2-\alpha)} r^2.$$

Similarly,

$$|f(z)| \ge r - \sum_{n=2}^{\infty} a_n r^n \ge r - r^2 \sum_{n=2}^{\infty} a_n \ge r - \frac{1-\alpha}{2^i (2-\alpha)} r^2.$$

Theorem 3.2. If $f(z) \in T(j,\alpha)$, then

$$1 - \frac{1 - \alpha}{2^{l-1}(2 - \alpha)} r \le \left| f'(z) \right| \le 1 + \frac{1 - \alpha}{2^{l-1}(2 - \alpha)} r$$

with equality for the function $f(z)=z-\frac{1-\alpha}{2^{l}(2-\alpha)}z^{2}$.

Proof. We have

$$|f'(z)| \le 1 + \sum_{n=2}^{\infty} na_n |z|^{n-t} \le 1 + r \sum_{n=2}^{\infty} na_n.$$
 (3.1)

In view of Theorem 2.2,

$$2^{\mathbf{j}}\sum_{n=2}^{\infty}na_{n} \leq 1 - \alpha + \alpha 2^{\mathbf{j}}\sum_{n=2}^{\infty}a_{n}$$
$$\leq 1 - \alpha + \alpha 2^{\mathbf{j}}\frac{1 - \alpha}{2^{\mathbf{j}}(2 - \alpha)} = \frac{2(1 - \alpha)}{2 - \alpha}$$

A substitution of (3.2) into (3.1) yields the right-hand inequality. On the other hand,

$$|f'(z)| \ge 1 - \sum_{n=2}^{\infty} na_n |z|^{n-1} \ge 1 - r \sum_{n=2}^{\infty} n a_n \ge 1 - \frac{1-\alpha}{2^{d-1}(2-\alpha)} r.$$

This completes the proof.

4. Convex Linear Combinations

In this section, we shall prove the class $T(j,\alpha)$ is closed under convex liear combinations.

Theorem 4.1. $T(j,\alpha)$ is a convex set.

Proof. Let the functions

$$f_{j}(z) = z - \sum_{n=2}^{\infty} a_{j,n} z^{n}(a_{j,n} \ge 0, \ i=1,2,)$$
 (4.1)

be in the class $T(j,\alpha)$. It is sufficient to show that the function h(z) defined by

$$h(z) = \lambda f_1(z) + (1 - \lambda) f_2(z) (0 \le \lambda \le 1)$$

$$(4.2)$$

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS 75 WITH NEGATIVE COEFFICIENTS 75

is in the class $T(j,\alpha)$. Since

$$h(z) = z - \sum_{n=2}^{\infty} \{ \lambda a_{1nn} + (1 - \lambda) a_{2nn} \} z^n, \qquad (4.3)$$

with the aid of Theorem 2.2, we have

$$\sum_{n=2}^{\infty} n^{i}(n-\alpha) \{ \lambda a_{\nu n} + (1-\lambda)a_{2\nu n} \} \leq 1-\alpha$$
(4.4)

which implies $h(z) \in T(j,\alpha)$.

Theorem 4.2. Let $f_1(z) = z$ and

$$f_{n}(z) = z - \frac{1 - \alpha}{n!(n - \alpha)} z^{n} \quad (j = 0, 1, 2, \cdots, n \ge 2)$$
(4.5)

for $0 \le \alpha < 1$. Then f(z) is in the class $T(y,\alpha)$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z)$$
(4.6)

where $\lambda_n \ge 0$ $(n \ge 1)$ and $\sum_{n=1}^{\infty} \lambda_n = 1$.

Proof. Assume that

$$f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z) = z - \sum_{n=1}^{\infty} \frac{1-\lambda}{n!(n-\alpha)} \lambda_n z^n.$$
(4.7)

Then it follows that

$$\sum_{n=2}^{\infty} \frac{n^{i}(n-\alpha)(1-\alpha)}{(1-\alpha)n^{i}(n-\alpha)} \lambda_{n}$$
$$= \sum_{n=2}^{\infty} \lambda_{n} = 1 - \lambda_{2} \le 1$$

which shows $f(z) \in T(j,\alpha)$

Conversely, assume that the function f(z) defined by (1.6) belongs to the class $T(j,\alpha)$

Then, since

$$a_{n} \leq \frac{1-\alpha}{n^{\prime}(n-\alpha)} \ (n \geq 2), \tag{4.9}$$

Man Dong Hur and Ge Hwan Oh

we may put

$$\lambda_n = \frac{n!(n-\alpha)}{1-\alpha} a_n \quad (n \ge 2), \tag{4.10}$$

and

$$\lambda_1 = I - \sum_{n=2}^{\infty} \lambda_n. \tag{4.11}$$

Hence, we can see that f(z) can be expressed in the form (4.6).

Above Theorem 4.2 shows that the class $T(j,\alpha)$ is closed under convex linear combinations.

Corollary 4.3 The extreme points of the class $T(j,\alpha)$ are the functions $f_n(z)$ $(n \ge 1)$ given by Theorem 4.2.

5. Convolution Properties

Let the function $f_1(z)$ (i=1,2) be defined by (4.1). Then, we define the modified convolution $(f_1 * f_2)(z)$ of $f_1(z)$ and $f_2(z)$ by

$$(f_1 * f_2)(z) = z - \sum_{n=2}^{\infty} a_{1,n} a_{2,n} z^n$$
 (5.1)

Theorem 5.1 Let the function $f_1(z)$ (i=1,2) defined by (4.1) be in the class $T(j,\alpha)$. Then $(f_1 * f_2)(z)$ is in the class $T(j,\beta)$, where

$$\beta = \frac{2^{i} - 2(\frac{1 - \alpha}{2 - \alpha})^{2}}{2^{i} - (\frac{1 - \alpha}{2 - \alpha})^{2}}$$
(5.2)

The result is sharp.

Proof. From Theorem 2.2, we know that

$$\sum_{n=2}^{\infty} n^{i}(n-\alpha)a_{n} \leq 1-\alpha, \text{ and } \sum_{n=2}^{\infty} n^{i}(n-\alpha)b_{n} \leq 1-\alpha$$

We wish to find the largest $\beta = \beta(\alpha)$ such that

$$\sum_{n=2}^{\infty} n^{i}(n-\beta)a_{n}b_{n}\leq 1-\beta.$$

76

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS 77 WITH NEGATIVE COEFFICIENTS 77

Equivalently, we want to show that

$$\sum_{n=2}^{\infty} \frac{n^{1}(n-\alpha)}{1-\alpha} a_{n} \leq 1$$
(5.3)

and

$$\sum_{n=2}^{\infty} \frac{n^{i}(n-\alpha)}{1-\alpha} b_{n} \leq 1$$
(5.4)

imply that

$$\sum_{n=2}^{\infty} \frac{n^{3}(n-\beta)}{1-\beta} a_{n} b_{n} \leq 1$$
(5.5)

for all
$$\beta = \beta(\alpha) \leq \frac{n^{i} - n(\frac{1-\alpha}{n-\alpha})^{2}}{n^{i} - (\frac{1-\alpha}{n-\alpha})^{2}}$$

From (5.3) and (5.4), we get, by means of the Cauchy-Schwarz inequality,

$$\sum_{n=2}^{\infty} \frac{n^{n}(n-\alpha)}{1-\alpha} \sqrt{a_{n}b_{n} \leq 1}$$
(5.6)

It will be, therefore, sufficient to prove that

$$\frac{n!(n-\beta)}{1-\beta}a_nb_n \leq \frac{n!(n-\alpha)}{1-\alpha}\sqrt{a_nb_n}$$

for $\beta \leq \beta(\alpha)$ and $n=2,3,\cdots$ or

$$\sqrt{a_n b_n} \leq (\frac{n-\alpha}{1-\alpha})(\frac{1-\beta}{n-\beta})$$

From (5.6), it follows that $\sqrt{a_n b_n} \leq \frac{1-\alpha}{n'(n-\alpha)}$ for each n $(n=2,3,\cdots)$.

Hence, it will be sufficient to show that

$$\frac{1-\alpha}{n^{2}(n-\alpha)} \leq \left(\frac{n-\alpha}{1-\alpha}\right) \left(\frac{1-\beta}{n-\alpha}\right) \text{ for all } n=2,3,\cdots.$$
(5.7)

Inequality (5.7) is equivalent to

$$\beta \leq \frac{n^{j} - n(\frac{1-\alpha}{n-\alpha})^{2}}{n^{j} - (\frac{1-\alpha}{n-\alpha})^{2}} = \frac{n^{j}(n-\alpha)^{2} - n(1-\alpha)^{2}}{n^{j}(n-\alpha)^{2} - (1-\alpha)^{2}}$$
(5.8)

The right hand side of (5.8) is a increasing function of n $(n=2,3,\cdots)$. Therefore, setting n=2 in (5.8), we get

$$\beta \leq \frac{2^{i}-2(\frac{1-\alpha}{2-\alpha})^{2}}{2^{i}-(\frac{1-\alpha}{2-\alpha})^{2}}$$

The result is sharp, for the functions

$$f_{1}(z) = z - \frac{1 - \alpha}{2^{j}(2 - \alpha)} z^{2} \in T(j, \alpha) \quad (j = 1, 2)$$
(5.9)

References

- 1. P.L.Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo (1983)
- V.P.Gupta and I. Ahmad, Certain Classes of functions univalent in the unit disk (I), Bull. Inst. Math. Acad. Sinica, 5(1977), 379-389.
- 3. V.P.Gupta and I. Ahmad, Certain Classes of functions univalent in the unit disk (1), Bull, Inst. Math. Acad. Sinica, 7(1979), 7-13.
- T.H.MacGregor, The radius of convexity for starlike functions of order ½, Proc. Amer. Math. Soc., 14(1963), 71-76.
- B.Pinchuk, On starlike and convex functions of order α, Duke Math. J, 35 (1968), 721-734.
- M.S.Robertson, On the theory of univalent functions, Ann. Math., 37(1936), 374-408.
- G.S.Salagean, Subclasses of univalet functions, Lecture notes in Mathematics, Springer Verlag, 1013(1983), 362-372.
- A.Schild and H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska, 29(1975), 99-107.
- 9. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

National Fisheries University Pusan 608-737, Korea and Dong-Myung Junior College Pusan 698-080, Korea 79