ON CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

Man Dong Hur and Ge Hwan Ob

1. Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=+\sum_{n=2}^{\infty} a_{\mathrm{n}} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z \cdot \mid z\}<1\}$
And let S denote the subclass of A consisting of analytic and univalent functions $f(z)$ in the unit disk U

A function $f(z)$ in S is said to be starlike of order a if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha(z \in U) \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ We denote by $S^{*}(\alpha)$ the class of all starlike functions of order α. Furthermore, a function $f(z)$ in S is said to be convex of order α if

$$
\begin{equation*}
\operatorname{Re}\left\{I+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in U) \tag{1.3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ And we denote by $K(\alpha)$ the class of all convex functions of order α.

It is well known that $f(z) \in K(\alpha)$ if and only if $z f^{\prime}(z) \in S^{*}(\alpha)$, and that $S^{*}(\alpha) \subseteq S^{*}(o) \equiv S^{*}$, and $K(\alpha) \subseteq K(o) \equiv K$ for $0 \leq \alpha<1$

These classes $S^{*}(\alpha)$ and $K(\alpha)$ were first introduced by Robertson ([6]), and later were studied by MacGreger([4]) and Dinchuk([5]).

Received Mar. 5, 1989.

Let $(f * g)(z)$ be the convolution or Hadamard product of two functions $f(z)$ and $g(z)$, that is, if $f(z)$ is given by (1.1) and $g(z)$ is given by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{\mathbf{n}} \tag{1.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(f_{*} g\right)(z)=\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} \tag{1.5}
\end{equation*}
$$

Let T denote the subclass of S consisting of functios $f(z)$ whose nonzero coefficients, from the second on, are negative. That is, an analytic function $f(z)$ is in the class T if it can be expressed as

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0\right) \tag{1.6}
\end{equation*}
$$

and let $T^{*}(\alpha)=T \cap S^{*}(\alpha), C(\alpha)=T \cap K(\alpha)$.
The class $T^{*}(\alpha)$ and related classes posses some very interesting properties and have been studied by Silverman([9]) and others. Also, Gupta and Ahmad([2],[3]) introduced the subclasses of T and obtained some of the results of Silverman([9]) for the class $T^{*}(\alpha)$ and $C(\alpha)$.

For a function $f(z)$ in S, we define

$$
\begin{align*}
& D^{\circ} f(z)=f(z) \tag{1.7}\\
& D^{\prime} f(z)=D f(z)=z f^{\prime}(z), \text { and } \tag{1.8}\\
& D^{\prime} f(z)=D\left(D^{-1} f(z)\right) \quad(j=1,2, \cdots) \tag{1.9}
\end{align*}
$$

The differential operator D^{J} was introduced by Salagean ([7]).
With the help of the differential operator $D^{\text {, }}$, we say that a function $f(z)$ belonging to T is said to be in the class $T(J, \alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{\mu+1} f(z)}{D^{\mathrm{j}} f(z)}\right\}>\alpha \quad(\rho=0,1,2, \cdots) \tag{1.10}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$, and for all z in U.

In particular, the class $T(0, \alpha)$ and $T(1, \alpha)$ was studied by Silverman ([9]).

In the paper, we investigate coefficıent estimates and distortion properties for the class $T(, \alpha)$ Furthermore, we prove that the class $T(j, \alpha)$ is closed under convex linear combinations. Also, we generalize some results of Silverman ([9]) and Schild and Silverman ([8]).

2. Coefficient estimates

Theorem 2.1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$. If $\sum_{n}^{\infty} n_{2}^{j}(n-\alpha) a_{\mathrm{a}}<1-\alpha$, then $\operatorname{Re}\left\{\frac{D^{\mu 1} f(z)}{D^{\prime} f(z)}\right\}>\alpha(J=0,1,2, \cdots)$

Proof It suffices to show that the values for $\frac{D^{p+1} f(z)}{D^{\prime} f(z)}$ hes in a circle centered at $w=1$ whose radius is $1-\alpha$ We have

$$
\begin{aligned}
\left|\frac{D^{\prime} f(z)}{D^{+1} f(z)}-1\right| & =\left|\frac{D f f(z)}{D^{n+1} f(z)-D^{j} f(z)}\right| \\
& =\left|\frac{\sum_{n=2}^{\infty}\left(n^{j+1}-n^{j}\right) a_{n} z^{n}}{z+\left.\sum_{n=2}^{\infty} n^{3}\left|a_{n}\right| z\right|^{n}}\right| \\
& \leq \frac{\sum_{n=2}^{\infty} n^{3}(n-1)\left|a_{n} \||z|^{n-1}\right.}{1-\sum_{n=2}^{\infty} n^{i}\left|a_{n} \| z\right|^{n-3}} \\
& \leq \frac{\sum_{n=2}^{\infty} n^{1}(n-1)\left|a_{n}\right|}{1-\sum_{n=2}^{\infty} n^{3}\left|a_{n}\right|}
\end{aligned}
$$

This last expression is bounded above by $1-\alpha$ if

$$
\sum_{n=2}^{\infty} n^{j}(n-1)\left|a_{n}\right| \leq(1-\alpha)\left(1-\sum_{n=2}^{\infty} n^{i}\left|a_{n}\right|\right)
$$

which is equivalent to

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{1}(n-\alpha)\left|a_{n}\right| \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

But (2.1) is true by hypothesis. Hence $\left|\frac{D^{+1} f(z)}{D^{\prime} f(z)}-1\right| \leq 1-\alpha$, and the theorem is proved.

The following theorem give a necessary and sufficient condition for a function to be in $T(0, \alpha)$.

Theorem 2.2. A function $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$ is in $T(, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{1}(n-\alpha) a_{0} \leq I-n \tag{22}
\end{equation*}
$$

Proof In view of theorem 2.1, it suffices to show the only if part. Assume that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{+3} f(z)}{D^{\prime} f(z)}\right\}=\operatorname{Re}\left\{\frac{z-\sum_{n=2}^{\infty} n^{3+1} a_{n} z^{n}}{z-\sum_{n=2}^{\infty} n^{3} a_{n} z^{n}}\right\}>\alpha(|z|<1) \tag{2.3}
\end{equation*}
$$

Choose values of z on the real axis so that $\frac{D^{+1} f(z)}{D^{f} f(z)}$ is real. Upon clearing the demominator in (2.3) and letting $z \rightarrow 1$ through real values, we obtain

$$
1-\sum_{n=2}^{\infty} n^{\mu-1} a_{n} \geq \alpha\left(1-\sum_{n=2}^{\infty} n^{j} a_{n}\right)
$$

Thus $\sum_{n=2}^{\infty} n^{j}(n-\alpha) a_{n} \leq 1-\alpha$, and the proof is complete. Further, the equality in (2.3) is attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{n^{3}(n-\alpha)} z^{n}(z \geq 2) \tag{2.4}
\end{equation*}
$$

Using the Theorem 2.2 , we have the following.

Corollary 2.3. $T(\jmath+1, \alpha) \subset T(1, \alpha)$ for $\jmath=0,1,2, \cdots$ and $0 \leq \alpha \leq 1$.
Corollary 2.4. Let the function $f(z)$ defined by (1.6) be in the class $T(,, \alpha)$, then

$$
\begin{equation*}
a_{n} \leq \frac{1-\alpha}{n^{\prime}(n-\alpha)}(n \geq 2) \tag{2.5}
\end{equation*}
$$

3. Distortion Theorems

Using the result obtained in Theorem 2.2, we prove
Theorem 3.1. If $f(z) \in T(j, \alpha)$, then

$$
r-\frac{1-\alpha}{2^{\mathrm{J}}(2-\alpha)} r^{2} \leq|f(z)| \leq r+\frac{1-\alpha}{2^{\mathrm{J}}(2-\alpha)} r^{2} \quad(|z|=r)
$$

with equality for the function $f(z)=z-\frac{1-\alpha}{2^{\frac{1}{(}(2-\alpha)}} z^{2}$.
Proof. Note that

$$
2^{3}(2-\alpha) \sum_{n=2}^{\infty} a_{n} \leq \sum_{n=2}^{\infty} n^{3}(n-\alpha) a_{n} \leq 1-\alpha .
$$

This last inequality follows from Theorem 2.2. Thus

$$
|f(z)| \leq r+\sum_{n=2}^{\infty} a_{n} r^{n} \leq r+r^{2} \sum_{n=2}^{\infty} a_{n} \leq r+\frac{1-\alpha}{2^{\prime}(2-\alpha)} r^{2}
$$

Similarly,

$$
|f(z)| \geq r-\sum_{n=2}^{\infty} a_{n} r^{n} \geq r-r^{2} \sum_{n=2}^{\infty} a_{n} \geq r-\frac{I-\alpha}{2^{J}(2-\alpha)} r^{2}
$$

Theorem 3.2. If $f(z) \in T(,, \alpha)$, then

$$
1-\frac{1-\alpha}{2^{1-3}(2-\alpha)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{1-\alpha}{2^{2^{\mathrm{L}}(2-\alpha)}} r
$$

with equality for the function $f(z)=z-\frac{1-\alpha}{2^{J}(2-\alpha)} z^{2}$.
Proof. We have

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \leq 1+r \sum_{n=2}^{\infty} n a_{n} . \tag{3.1}
\end{equation*}
$$

In view of Theorem 2.2,

$$
\begin{aligned}
& 2^{j} \sum_{n=2}^{\infty} n \alpha_{n} \leq 1-\alpha+\alpha 2^{2} \sum_{n=2}^{\infty} a_{n} \\
& \leq 1-\alpha+\alpha 2^{2} \frac{1-\alpha}{2^{j}(2-\alpha)}=\frac{2(1-\alpha)}{2-\alpha} .
\end{aligned}
$$

A substitution of (3.2) into (3.1) yields the right-hand inequality. On the other hand,

$$
\left|f^{\prime}(z)\right| \geq 1-\sum_{\mathrm{i}=2}^{\infty} n a_{\mathrm{n}}|z|^{\mathrm{n}-1} \geq 1-r \sum_{n=2}^{\infty} n a_{\mathrm{n}} \geq 1-\frac{1-\alpha}{2^{j-1}(2-\alpha)} r .
$$

This completes the proof.

4. Convex Linear Combinations

In this section, we shall prove the class $T(1, \alpha)$ is closed under convex liear combinations.

Theorem 4.1. $T(0, \alpha)$ is a convex set.
Proof. Let the functions

$$
\begin{equation*}
f_{\mathrm{s}}(z)=z-\sum_{n=2}^{\infty} a_{\mathrm{j}, \mathrm{n}} z^{n}\left(a_{\mathrm{j}}, \geq 0, \quad \imath=1,2,\right) \tag{4.1}
\end{equation*}
$$

be in the class $T(,, \alpha)$. It is sufficient to show that the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\lambda f_{1}(z)+(1-\lambda) f_{2}(z)(0 \leq \lambda \leq 1) \tag{4.2}
\end{equation*}
$$

is in the class $T(1, \alpha)$. Since

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty}\left\{\lambda a_{1, n}+(1-\lambda) a_{2, n}\right) z^{n}, \tag{4.3}
\end{equation*}
$$

with the aid of Theorem 2.2 , we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{j}(n-\alpha)\left\{\lambda a_{1, n}+(1-\lambda) a_{2, n}\right\} \leq 1-\alpha \tag{4.4}
\end{equation*}
$$

which implies $h(z) \in T(j, \alpha)$.
Theorem 4.2. Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{\mathrm{n}}(z)=z-\frac{1-\alpha}{n^{\mathrm{J}}(n-\alpha)} z^{\mathrm{n}} \quad(J=0,1,2, \cdots, n \geq 2) \tag{4.5}
\end{equation*}
$$

for $0 \leq \alpha<1$. Then $f(z)$ is in the class $T(\jmath, \alpha)$ if and only if it can be expresed in the form

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z) \tag{4.6}
\end{equation*}
$$

where $\lambda_{n} \geq 0(n \geq 1)$ and $\sum_{n=1}^{\infty} \lambda_{n}=1$.
Proof. Assume that

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z)=z-\sum_{n=-}^{\infty} \frac{1-\lambda}{n^{\perp}(n-\alpha)} \lambda_{n} z^{n} . \tag{4.7}
\end{equation*}
$$

Then it follows that

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{n^{1}(n-\alpha)(1-\alpha)}{(1-\alpha) n^{1}(n-\alpha)} \lambda_{n} \\
= & \sum_{n=2}^{\infty} \lambda_{n}=1-\lambda_{1} \leq 1
\end{aligned}
$$

which shows $f(z) \in T(,, \alpha)$
Conversely, assume that the function $f(z)$ defined by (1.6) belongs to the class $T(J, \alpha)$
Then, since

$$
\begin{equation*}
a_{n} \leq \frac{1-\alpha}{n^{\prime}(n-\alpha)}(n \geq 2), \tag{4.9}
\end{equation*}
$$

we may put

$$
\begin{equation*}
\lambda_{n}=\frac{n^{1}(n-\alpha)}{1-\alpha} a_{n}(n \geqq 2), \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}=1-\sum_{n=2}^{\infty} \lambda_{n} \tag{4.11}
\end{equation*}
$$

Hence, we can see that $f(z)$ can be expressed in the form (4.6).
Above Theorem 4.2 shows that the class $T(J, \alpha)$ is closed under convex linear combinations.

Corollary 4.3 The extreme points of the class $T(\gamma, \alpha)$ are the functions $f_{\mathrm{n}}(z)(n \geq 1)$ given by Theorem 4.2.

5. Convolution Properties

Let the function $f_{1}(z)(t=1,2)$ be defined by (4.1). Then, we define the modified convolution $\left(f_{1} * f_{2}\right)(z)$ of $f_{1}(z)$ and $f_{2}(z)$ by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z-\sum_{n=2}^{\infty} a_{1, n} a_{2, n} z^{n} \tag{5.1}
\end{equation*}
$$

Theorem 5.1 Let the function $f_{1}(z)(t=1,2)$ defined by (4.1) be in the class $T(,, \alpha)$. Then $\left(f_{1} * f_{2}\right)(z)$ is in the class $T(1, \beta)$, where

$$
\begin{equation*}
\beta=\frac{2^{j}-2\left(\frac{1-\alpha}{2-\alpha}\right)^{2}}{2^{j}-\left(\frac{1-\alpha}{2-\alpha}\right)^{2}} \tag{5.2}
\end{equation*}
$$

The result is sharp.
Proof. From Theorem 2.2, we know that

$$
\sum_{n=2}^{\infty} n^{5}(n-\alpha) a_{n} \leq 1-\alpha, \text { and } \sum_{n=2}^{\infty} n^{1}(n-\alpha) b_{n} \leq 1-\alpha
$$

We wish to find the largest $\beta=\beta(\alpha)$ such that

$$
\sum_{n-2}^{\infty} n^{3}(n-\beta) a_{n} b_{n} \leq 1-\beta
$$

Equivalently, we want to show that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n^{1}(n-\alpha)}{1-\alpha} a_{n} \leq 1 \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{a=2}^{\infty} \frac{n^{1}(n-\alpha)}{1-\alpha} b_{n} \leq 1 \tag{5.4}
\end{equation*}
$$

imply that

$$
\begin{equation*}
\sum_{n-2}^{\infty} \frac{n^{3}(n-\beta)}{1-\beta} a_{n} b_{n} \leq 1 \tag{5.5}
\end{equation*}
$$

for all $\beta=\hat{\beta}(\alpha) \leq \frac{n^{3}-n\left(\frac{1-\alpha}{n-\alpha}\right)^{2}}{n^{3}-\left(\frac{1-\alpha}{n-\alpha}\right)^{2}}$
From (5.3) and (5.4), we get, by means of the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n^{1}(n-\alpha)}{1-\alpha} \sqrt{a_{n} b_{n} \leq 1} \tag{5.6}
\end{equation*}
$$

It will be, therefore, sufficient to prove that

$$
\frac{n^{2}(n-\beta)}{1-\beta} a_{\mathrm{n}} b_{\mathrm{n}} \leq \frac{n^{2}(n-\alpha)}{1-\alpha} \sqrt{a_{\mathrm{n}} b_{\mathrm{n}}}
$$

for $\beta \leq \beta(\alpha)$ and $n=2,3, \cdots$
or

$$
\sqrt{a_{\mathrm{n}} b_{\mathrm{n}}} \leq\left(\frac{n-\alpha}{1-\alpha}\right)\left(\frac{1-\beta}{n-\beta}\right) .
$$

From (5.6), it follows that $\sqrt{a_{n} b_{\mathrm{n}}} \leq \frac{1-\alpha}{n^{\prime}(n-\alpha)}$ for each $n(n=2,3, \cdots)$.
Hence, it will be sufficient to show that

$$
\begin{equation*}
\frac{1-\alpha}{n^{2}(n-\alpha)} \leq\left(\frac{n-\alpha}{I-\alpha}\right)\left(\frac{1-\beta}{n-\alpha}\right) \text { for all } n=2,3, \cdots \tag{5.7}
\end{equation*}
$$

Inequality (5.7) is equivalent to

$$
\begin{equation*}
\beta \leq \frac{n^{3}-n\left(\frac{1-\alpha}{n-\alpha}\right)^{2}}{n^{3}-\left(\frac{1-\alpha}{n-\alpha}\right)^{2}}=\frac{n^{3}(n-\alpha)^{2}-n(1-\alpha)^{2}}{n^{3}(n-\alpha)^{2}-(1-\alpha)^{2}} \tag{5.8}
\end{equation*}
$$

The right hand side of (5.8) is a increasing function of $n(n=2,3, \cdots)$. Therefore, setting $n=2$ in (5.8), we get

$$
\beta \leq \frac{2^{2-2\left(\frac{1-\alpha}{2-\alpha}\right)^{2}}}{2^{1}-\left(\frac{1-\alpha}{2-\alpha}\right)^{2}}
$$

The result is sharp, for the functions

$$
\begin{equation*}
f_{1}(z)=z-\frac{1-\alpha}{2^{\prime}(2-\alpha)} z^{2} \in T(y, \alpha) \quad(j=1,2) \tag{5.9}
\end{equation*}
$$

References

1. P.L.Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo (1983)
2. V.P.Gupta and I. Ahmad, Certan Classes of functions univalent in the unit disk (I), Bull. Inst. Math. Acad. Sinica, 5(1977), 379-389.
3. V.P.Gupta and I. Ahmad, Certain Classes of functions univalent in the unit disk (II), Bull. Inst. Math. Acad. Sintca, 7(1979), 7-13.
4. T.H.MacGregor, The radius of convexity for starlike functions of order $1 / 2$, Proc. Amer. Math. Soc., 14(1963), 71-76.
5. B.Panchuk, On starlike and convex functions of order $\alpha_{\text {, }}$ Duke Math. J, 35 (1968), 721-734.
6. M.S.Robertson, On the theory of univalent functions, Ann. Math., 37(1936), 374-408.
7. G.SSalagean, Subclasses of univalet functions, Lecture notes in Mathematics, Springer Verlag, 1013(1983), 362-372.
8. A.Schild and H. Silverman, Convolution of unvalent functions with negative coefficients, Ann. Univ. Mariae Curie-Skiodowska, 29(1975), 99-107.
9. H. Sulverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

National Fisheries University Pusan 608-737, Korea
and
Dong-Myung Junior College
Pusan 698-080, Korea

