ON CERTAIN CLASS OF ANALYTIC FUNCTIONS DEFINED BY CONVOLUTIONS

Ohsang Kwon and Nak Eun Cho

Abstract

We introduce a class $L^*_{\sigma}(\alpha, \beta, \gamma)$ of functions defined by $f^*S_{\sigma}(z)$ of f(z) and $S_{\sigma}(z)=z/(1-z)^{2(1-\sigma)}$. The present paper is to determine extreme point, coefficient inequalities, distortion Theorem and radius of starlikeness and convexity for functions in $L^*_{\sigma}(\alpha, \beta, \gamma)$. And we give fractional calculus.

1. Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic in the unit disk $U=\{z:|z|< l\}$. And let S denote the subclass of A consisting of analytic and univalent functions f(z) in U.

A function f(z) in S is said to be starlike of order α if

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha(z \in \mathbf{U}),$$
 (1.2)

for some $(0 \le \alpha < 1)$. Denote by $S^*(\alpha)$. Further, a function f(z) in S is said to be convex of order α if,

$$Re\left\{1+\frac{zf''(z)}{f(z)}\right\} > \alpha(z \in \mathbf{U}),$$
 (1.3)

Received Fed. 15, 1989.

for some $(0 \le \alpha < 1)$. Denote by $K(\alpha)$. Now, the function

$$S_{\sigma}(z) = \frac{z}{(1-z)^{-2(1-\sigma)}}, (0 \le \delta < 1)$$
 (1.4)

is the well-known extremal function for the class $S^*(\delta)$. Setting

$$C(\delta, n) = \frac{(k-2\delta)}{(n-1)!} (n=2,3,4,\dots),$$
 (1.5)

 $S_{\delta}(z)$ can be written in the form

$$S_{\sigma}(z) = z + \sum_{n=2}^{\infty} C(\delta, n) z^{n}$$
 (1.6)

Then we note that $C(\delta, n)$ is decreasing in δ and satisfies

$$\lim_{n \to \infty} C(\delta, n) = \begin{cases} \infty & (\delta < \frac{1}{2}) \\ 0 & (\delta > \frac{1}{2}) \\ 1 & (\delta = \frac{1}{2}) \end{cases}$$
 (1.7)

Let f * g(z) be the convolution of two functions f(z) and g(z), that is, if f(z) is given by (1.1) and g(z) is given by $g(z)=z+\sum_{n=2}^{\infty}b_nz^n$ then

$$f * g(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$
 (1.8)

We say that a function f(z) defined by (1.1) belongs to the class $L_{\sigma}(\alpha, \beta, \gamma)$ if f(z) satisfies the following condition

$$\left| \frac{(f^*S_{\sigma}(z))' - 1}{\alpha(f^*S_{\sigma}(z))' + (1 - \gamma)} \right| < \beta \tag{1.9}$$

for $0 \le \alpha \le 1$, $0 < \beta \le 1$ and $0 \le \gamma \le 1$.

$$f(z) \in T$$
 iff $f(z) = z - \sum_{n=1}^{\infty} a_n z^n$ $(a_n \ge 0)$ (1.10)

We denote $L^*_{\sigma}(\alpha, \beta, \gamma) = L_{\sigma}(\alpha, \beta, \gamma) \cap T$. The class $L_{\sigma}(\alpha, \beta, \gamma)$ is the generalization of the class $L(\alpha, \beta, \gamma)$ which was defined by S K. Lee [1]. In particular, $L_{\frac{1}{2}}(\alpha, \beta, \gamma) = L(\alpha, \beta, \gamma)$.

2. Coefficient Inequalities

Theorem 2.1. Let the function f(z) be defined (1.10). Then f(z) is in the class $L^*_{\sigma}(\alpha, \beta, \gamma)$ if and only if

$$\sum_{n=0}^{\infty} (1+\alpha\beta)n \ C(\delta, \ n)a_n \le \beta(\alpha+1-\gamma)$$
 (2.1)

The result is sharp,

Proof. Let f(z) be in the class $L^{\kappa}_{\sigma}(\alpha, \beta, \gamma)$ Then we have

$$\left| \frac{(f \cdot S_{\sigma}(z))' - 1}{\alpha (f \cdot S_{\sigma}(z))' + (1 - \gamma)} \right|$$

$$= \left| \frac{-\sum_{n=2}^{\infty} n \ C(\delta, \ n) a_{n} z^{n-1}}{(\alpha + 1 - \gamma) - \alpha \sum_{n=2}^{\infty} n \ C(\delta, n) a_{n} z^{n-1}} \right| < \beta$$
(2.2)

for all $z \in U$. Since the denominator in (2.2) is positive for small positive values of z and, consequently, for all z (0 < z < 1), we let $z \rightarrow I^-$ to obtain

$$\sum_{n=2}^{\infty} n \ C(\delta, \ n) a_{n} \leq \beta(\alpha + 1 - \gamma) - \alpha\beta \sum_{n=2}^{\infty} n \ C(\delta, \ n) a_{n} \qquad (2.3)$$

which is equivalent to (2.1).

For the converse, let the inequality (2.1) hold. Then we obtain that

$$\begin{aligned} &\left| (f^*S(z))' - 1 \left| -\beta \left| \alpha (f^*S(z))' \pm (1 - \gamma) \right| \right| \\ &= \left| -\sum_{n=2}^{\infty} nC(\delta, n) a_n z^{n-1} \right| -\beta \left| (\alpha + 1 - \gamma) - \alpha \sum_{n=2}^{\infty} nC(\delta, n) a_n z^{n-1} \right| \quad (2.4) \\ &\leq \sum_{n=2}^{\infty} (1 + \alpha \beta) nC(\delta, n) a_n - \beta (\alpha + 1 - \gamma) \leq 0 \end{aligned}$$

Hence, by the maximum modulus Theorem, we can see that f(z) is in the class $L^*_{\sigma}(\alpha, \beta, \gamma)$.

Finally, the result is sharp, with the extremal function being of the form

$$f(z) = z - \frac{\beta(\alpha + 1 - \gamma)}{(1 + \alpha\beta)nC(\delta, n)} z^{n} \quad \text{for } n \ge 2.$$
 (2.5)

Corollary 2.2. Let the function f(z) defined by (1.10) be in the class $L^*_{\sigma}(\alpha, \beta, \gamma)$. Then

$$a_n \le \frac{\beta(\alpha + 1 - \gamma)}{(1 + \alpha\beta)nC(\delta, n)}$$
 for $n \ge 2$. (2.6)

The equality is attained by the function f(z) in (2.5)

Theorem 2.3. Let

$$f_1(z) = z \qquad \text{and} \tag{2.7}$$

$$f_{n}(z) = z - \frac{\beta(\alpha + 1 - \gamma)}{(1 + \alpha\beta)nC(\delta, n)} z^{n} \quad (n \ge 2).$$
 (2.8)

Then f(z) is in the class $L^*_{\sigma}(\alpha, \beta, \gamma)$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z), \qquad (2.9)$$

where $\lambda_n \ge 0$ for $n = 1, 2, 3, \cdots$ and

$$\sum_{n=1}^{\infty} \lambda_n = 1. \tag{2.10}$$

Proof. Assume that

$$f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z) = z - \sum_{n=2}^{\infty} \frac{\beta(\alpha + 1 - \gamma)}{(1 + \alpha\beta)nC(\delta, n)} \lambda_n z^n$$
 (2.11)
= $z - \sum_{n=2}^{\infty} a_n z^n$

where

$$a_{n} = \frac{(\alpha + 1 - \gamma)}{(1 + \alpha \beta) n C(\delta, n)} \lambda_{n}$$

Then we observe that

$$\sum_{n=2}^{\infty} (1+\alpha\beta) n C(\delta, n) \frac{(\alpha+1-\gamma)}{(1+\alpha\beta) n C(\delta, n)} \lambda_n$$

$$= \beta(\alpha+1-\gamma) \sum_{n=2}^{\infty} \lambda_n$$

$$= \beta(\alpha+1-\gamma) (1-\lambda_1) \leq \beta(\alpha+1-\gamma)$$
(2.13)

This shows that $f(z) \in L^*_{\sigma}(\alpha, \beta, \gamma)$ with the aid of Theorem 2.1.

Conversely, assume that f(z) is in the class L^*_{σ} (α, β, γ) , remembering the formula

$$\sum_{n=2}^{\infty} \frac{(1+\alpha\beta)nC(\delta, n)}{\beta(\alpha+1-\gamma)} a_n \leq 1,$$

from Theorem 2.1. We may set

$$\lambda_{n} = \frac{(1 + \alpha \beta) n C(\delta, n)}{(\alpha + 1 - \gamma)} \quad a_{n} \quad (n \ge 2)$$
 (2.14)

and we have from (2.10), that is,

$$\sum_{n=2}^{\infty} \lambda_n \leq 1.$$

Setting

$$\lambda_{i} = I - \sum_{n=2}^{\infty} \lambda_{n}, \qquad (2.15)$$

we have the representation (2.9). Thus we have theorem.

3. Distortion Theorems

Theorem 3.1. If the function f(z) defined by (1.10) is in the $L_{\sigma}^*(\alpha, \beta, \gamma)$, and either $0 \le \delta \le \frac{5}{6}$ or $|z| \le \frac{3}{4}$, then

$$|f(z)| \ge \max \{0, |z| - \frac{\beta(\alpha + 1 - \gamma)}{4(1 + \alpha\beta)(1 - \delta)} |z|^2\},$$
 (3.1)

$$\left| f(z) \right| \le \left| z \right| + \frac{\beta(\alpha + 1 - \gamma)}{4(1 + \alpha\beta)(1 - \alpha)} \left| z \right|^2. \tag{3.2}$$

The bounds are sharp,

Proof. By virture of Theorem 2.1, we note that

$$|f(z)| \ge \max\left\{0, |z| - \max_{n \in \mathbb{N} - |1|} \frac{\beta(\alpha + 1 - \gamma)}{(1 + \alpha\beta)nC(\delta, n)} |z|^n\right\},\tag{3.3}$$

$$|f(z)| \le |z| + \max_{n \in \mathbb{N} - |1|} \frac{\beta(\alpha + 1 - \gamma)}{(1 + \alpha\beta)nC(\delta, n)} |z|^n$$
(3.4)

for $z \in U$. Hence it suffices to deduce that

$$G(\delta, \alpha, \beta, \gamma, |z|, n) = \frac{\beta(\alpha + 1 - \gamma)}{(1 + \alpha\beta)nC(\delta, n)} |z|^n$$
 (3.5)

is a decresing function of n $(n \ge 2)$. Since

$$C(\delta, n+1) = \frac{n+1-2\delta}{n} C(\delta, n), \tag{3.6}$$

we can see that, for $|z| \neq 0$,

$$G(\delta, \alpha, \beta, \gamma, |z|, n) \ge G(\delta, \alpha, \beta, \gamma, |z|, n+1)$$
 if and only if (3.7)

$$H(\delta, |z|, n) = (n+1)(n+1-2\delta) + n^2|z| \ge 0$$
 (3.8)

It is easy to see that $H(\delta,|z|, n)$ is decresing function of δ for fixed |z|. Consequently it follows that

$$H(\delta,|z|, n) \ge H(\delta/6,|z|, n) = n^2(1-z) + \frac{1}{3}(n-2) \ge 0.$$
 (3.9)

for $0 \le \delta \le 5/6$, $z \in U$ and $n \ge 2$.

Further, since $H(\delta, |z|, n)$ is decresing in |z| and increasing in n, we obtain that

$$H(\delta,|z|, n) > H(1,|z|, n) \ge H(1, \frac{3}{4}, 2) = 0$$
 (3.10)

for
$$0 \le \delta \le 1$$
, $|z| < \frac{3}{4}$ and $n \ge 2$. Thus $\max_{n \in N-11} G(\delta, \alpha, \beta, \gamma, |z|, n)$

is attained at n=2.

Finally, since the functions $f_n(z)$ $(n \ge 2)$ defined in Theorem 2.1 are the extreme points of the class $L^*_{\sigma}(\alpha, \beta, \gamma)$, we can see that the bounds of the theorem is attained by the function $f_2(z)$, that is,

$$f_2(z) = z - \frac{\beta(\alpha + 1 - \gamma)}{4(1 + \alpha\beta)(1 - \delta)} z^2$$
(3.11)

Theorem 3.2. If the function f(z) defined by (1.10) is in the class $L^*_{\sigma}(\alpha, \beta, \gamma)$ and either $0 \le \delta \le \frac{1}{2}$ or $|z| \le \frac{1}{2}$, then

$$1 - \frac{\beta(\alpha + 1 - \gamma)}{2(1 + \alpha\beta)(1 - \delta)} \left| z \right| \le \left| f'(z) \right| \le 1 + \frac{\beta(\alpha + 1 - \gamma)}{2(1 + \alpha\beta)(1 - \delta)} \left| z \right|. \tag{3.12}$$

The bounds are sharp.

Proof. It is similar to Theorem 3.1.

4. Some results of convolution

Theorem 4.1. $L^*_{\sigma}(\alpha, \beta, \gamma)$ is subclass of S if and only if $0 \le \delta \le \frac{1}{2}$

Proof Note that the function f(z) defined by (1.10) is in the class S if

$$\sum_{n=0}^{\infty} |a_n| \le 1, ([6]). \tag{4.1}$$

Hence it suffices to prove that

$$(1+\alpha\beta)C(\delta,n) \ge \beta(\alpha+1-\gamma) \tag{4.2}$$

for the $0 \le \delta \le \frac{1}{2}$ and $n \ge 2$ by means of Theorem 2.1. Since $C(\delta, n) \ge C(\frac{1}{2}, n) = 1$ for $0 \le \delta \le \frac{1}{2}$, we can see that, for $0 \le \delta \le \frac{1}{2}$,

$$(1+\alpha\beta)C(\delta, n) - \beta(\alpha+1-\gamma) \ge (1+\alpha\beta) - \beta(\alpha+1-\gamma) \ge 0. \quad (4.3)$$

Conversely, if we assum $\delta > \frac{1}{2}$, then $\lim_{n \to \infty} C(\delta, n) = 0$. Taking the function $f_n(z)$ given by (2.8), we have

$$f'_{n}(z) = 1 - \frac{\beta(\alpha + 1 - \gamma)}{(1 + \alpha\beta)C(\delta, n)} z^{n-1} = 0$$
 (4.4)

for
$$z^{n-1} = \frac{(1+\alpha\beta)C(\delta, n)}{\beta(\alpha+1-\gamma)}$$

which is less than one for n sufficiently large. Thus $f_n(z)$ is not univalent for $\delta > \frac{1}{2}$ and $n=n(\alpha)$ sufficiently large.

Theorem 4.2. Let the function f(z) defined by (1.10) be in the class $L^*_{\sigma}(\alpha, \beta, \gamma)$ with $0 \le \delta \le \frac{1}{2}$, then f(z) is a starlike of order τ $(0 \le \tau < 1)$ in the disk $|z| < r_{\nu}$ where

$$r_{\rm I} = \inf_{n \in \mathbb{N}^{-|\Omega|}} \left\{ \frac{(1+\alpha\beta)(1-\tau)nC(\delta, n)}{\beta(\alpha+1-\gamma)(n-\tau)} \right\}^{1/(n-1)} \tag{4.5}$$

Proof It is a sufficient to show that the values for $\frac{zf_{-}(z)}{f(z)}$ lie in a circle with center at 1 whose radious is $1-\tau$ for $z < r_1$.

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \frac{\sum_{n=2}^{\infty} (n-1) |a_n| |z|^{n-1}}{1 - \sum_{n=1}^{\infty} |a_n| |z|^{n-1}}.$$
 (4.6)

Thus
$$\left| \frac{zf'(z)}{f(z)} \right| -1 \le 1 - \tau$$
 if

$$\sum_{n=2}^{\infty} (n-I) |a_n| |z|^{n-1} \leq (I-\tau) \{1 - \sum_{n=2}^{\infty} |a_n| |z|^{n-1} \}$$

which is equivalent to

$$\left(\frac{n-\tau}{1-\tau}\right) |a_{n}| |z|^{n-\tau} \leq 1.$$
 (4.7)

By virture of Theorem 2.1, we need only to find values of |z| for which the inequality

$$\left(\frac{n-\tau}{1-\tau}\right)\left|z\right|^{n-t} \le \frac{(1+\alpha\beta)nC(\delta, n)}{\beta(\alpha+1-\gamma)} \tag{4.8}$$

Solving (4.8) for |z|, we obtain the result.

Theorem 4.3 Let the function f(z) defined by (1.10) be in the class $L^*_{\sigma}(\alpha,\beta, \gamma)$ with $0 \le \delta \le \frac{1}{2}$. Then f(z) is convex of order $\tau(0 \le \tau < 1)$ in the disk $|z| < r_2$, where

$$r_2 = \inf_{n \in \mathbb{N} \to \mathbb{N}} \left\{ \frac{(1+\alpha\beta)(1-\tau)C(\delta, n)}{\beta(\alpha+1-\gamma)(n-\tau)} \right\} 1/(1-1)$$
 (4.9)

5. Fractional Calculus

We need the definitions of fractional derivatives and fractional integrals which were defined by S. Owa([4]).

Theorem 5.1. Let the function f(z) defined by (1.10) be in the class $L^*_{\sigma}(\alpha, \beta, \gamma)$ with $0 \le \delta \le \frac{1}{2}$. Then

$$|D_{\mathbf{z}}^{-\lambda} f(z)| \ge \frac{|z|^{1+\lambda}}{\Gamma(2+\lambda)} \left\{ 1 - \frac{\beta(\alpha+1-\gamma)}{2(2+\lambda)(1+\alpha\beta)(1-\alpha)} \right\} \text{ and } (5.1)$$

$$\left| D_{\mathbf{z}}^{-\lambda} f(z) \right| \le \frac{|z|^{1+\lambda}}{\Gamma(2+\lambda)} \left\{ 1 + \frac{\beta(\alpha + 1 - \gamma)}{2(2+\lambda)(1+\alpha\beta)(1-\alpha)} \right\} \tag{5.5}$$

for $\lambda > \theta$ and $z \in U$ The bounds are sharp.

Proof. It is easily known that

$$D_z^{-\lambda} f(z) = \frac{1}{\Gamma(2+\lambda)} z^{\lambda} \left\{ z - \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2+\lambda)}{\Gamma(n+1+\gamma)} a_n z^n \right\}$$

Now, we consider the function

$$F(z) = z - \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2+\lambda)}{\Gamma(n+1+\lambda)} a_n z^n \quad \text{for } \lambda > 0.$$
 (5.6)

We not that

$$0 < \frac{\Gamma(n+1)\Gamma(2+\lambda)}{\Gamma(n+1+\lambda)} \le \frac{2}{2+\lambda} \tag{5.7}$$

for $\lambda > 0$ and $n \ge 2$, and $C(\delta, n+1) \ge C(\delta, n)$ for $0 \le \delta \le \frac{1}{2}$ and $n \ge 2$. Since $f(z) \in L_{\sigma}^*$ (α, β, γ) , by using Theorem 2.1, we obtain

$$|F(z)| \ge |z| - |z|^2 \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2+\lambda)}{\Gamma(n+1+\lambda)} a_n$$

$$\ge |z| - (\frac{2}{2+\lambda})|z|^2 \sum_{n=2}^{\infty} a_n$$

$$\ge |z| - \frac{\beta(\alpha+1-\gamma)}{2(2+\lambda)(1+\alpha\beta)(1-\delta)} |z|^2,$$

$$|F(z)| \le |z| + |z|^2 \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2+\lambda)}{\Gamma(n+1+\lambda)} a_n$$

$$\le |z| + (\frac{2}{2+\lambda})|z|^2 \sum_{n=2}^{\infty} a_n$$

$$\le |z| + \frac{\beta(\alpha+1-\gamma)}{2(2+\lambda)(1+\alpha\beta)(1-\delta)} |z|^2$$
(5.9)

which gives (5.5)

Further, taking the function f(z) defined by

$$f(z)=z-\frac{\beta(\alpha+1-\lambda)}{4(1+\alpha\beta)(1-\delta)}z^2,$$

we can see that the bounds of the theorem are sharp.

Theorem 5.2. Let the function f(z) defined by (1.10) be in the

class $L^*_{\sigma}(\alpha, \beta, \gamma)$ with $0 \le \delta \le \frac{1}{2}$. Then

$$|D_{z}^{\lambda}f(z)| \geq \frac{|z|^{1-\lambda}}{\Gamma(2-\lambda)} \left\{ 1 - \frac{\beta(\alpha+1+\gamma)}{2(2-\lambda)(1+\alpha\beta)(1-\delta)} |z| \right\} \quad (5.10)$$

and

$$|D_z^{\lambda} f(z)| \le \frac{|z|^{1-\lambda}}{\Gamma(2-\lambda)} \left\{ 1 + \frac{\beta(\alpha + 1 - \gamma)}{2(2-\lambda)(1 + \alpha\beta)(1 - \delta)} |z| \right\}. \quad (5.11)$$

The bounds are sharp.

References

- H.S. Kim and S.K. Lee, Some classes of univalent functions, Math. Japonica, 32(1987), 781-796.
- O.P. Ahuja and H. Silverman, Convolution of prestarlike functions, Internat. J. Math. and Math. Sci., 6(1983), 59-68.
- V.P. Gupta and P.K. Jam, Certain classes of univalent functions with negative coefficients (II), Bull. Austral. Math. Soc., 15(1976), 467-473.
- 4. S. Owa, On the distortion theorems(I), Kyungpook Math. J., 18(1978), 53-59
- S Owa and O.P. Ahuja, A class of functions defined by using Hadamard product, Hokkaido Math. J. Vol. 15(1986), 217-232.
- H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

Kyungsung University Pusan 608–736, Korea and National Fisheries University Pusan 608–737 Korea