Pusan KySngnam Mathematical Journal a7
Vol 5, 57~68 1989

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS
DEFINED BY CONVOLUTIONS

Ohsang Kwon and Nak Eun Cho

Abstract

We introduce a class L' (=, 8, ¥) of functions defined by f+S,
(2) of f(z) and Ss(z)=2{(1—2)*". The present paper is to determine
extreme point, coefficient inequalities, distortion Theorem and radius
of starlikeness and convexity for functions in L% (a, 8, ¥). And we
give fractional calculus,

1. Introduction

Let A denote the class of functions of the form
f(2) =2+ 3 ane" (L1)

which are analytic in the unit disk U=({z: {21 <I}. And let S denote
the subclass of A consisting of analytic and univalent functions f(z)
in U.

A function f(z) in S is said to be starlike of order « if

@)y,
Re{ ) } >a(zeU), (1.2)

for some (0=a<1). Denote by S*(a). Further, a function f(z) in S
is said Lo be convex of order «a if

A2y o,
Re{1+ o) } >a(zeU), (1.3)
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for some (0=a<1). Denote by K(«). Now, the function

So(z)zﬁxioé &< 1) (14)

(

is the well-known extremal function for the class S*(8). Setting

o, m= B2 (i=23,4.0) (15)

Ss(z) can be written in the form

Ss(2)=z+3 C(s, n)° (1.6)

Then we note that C(#, n) 1s decreasing in & and satisfies

fin C(s, n)= joo (5§<)4) (L7)
0 (6>%)
1 (3=)%)

Let frg(z) be the convolution of two functions f(z) and g(z), that
is, if f(z) is given by (1.1) and g(z) is given by g(z)=z+§bnz“ then

[+8()=2+3 anboc" (18)

We say that a function f(z) defined by (1.1) belongs to the class
Ls(e, B, y) if f(z) satisfies the following condition

(f*Ss(z)) —1
wlFSs ) T—p) | <F (1.9)

for 0a=x], 0<B<] and 0O=y=1.

[@) €T iff fz)=2— Lanz® (an20)  (110)
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We denote L5 (a, 8, y)=Ls(a, B, ¥)NT. The class Ls(a, B, ¥)is
the generalization of the class L(a, 8, y) which was defined by S
K. Lee [1]. In particular, L4 (a, 8, y)=L (a, 8, ¥ ).

2. Coefficient Inequalities

Theorem 2.1. Let the function f(z) be defined (1.10). Then
f(z) is in the class L's(a, A, y) if and only if

> (1+af)n CO, njag < Blati—7) (2.1)
The result is sharp,
Proof. let f(z) be in the class L (a, B, y) Then we have

(fSs(z))—1
a(fxSs(2)+(1-y)

(2.2}

-gz: n C(S, n)ap!

<B

(at+i1—y)—a ‘g:zn C(S,n)anz™"

for all z€ U. Since the denominator in (2.2) is positive for small positive
values of z and, consequently, for all z (0<2<1), we let z—1" to obtain

fL.:n C(S, n)ag £ Blati—y)—af gn CE, nyan (2.3)

which is equivalent to (2.1).
For the converse, let the inequality (2.1} hold. Then we obtain that

{(FS(2)) —1|—Bla(fS(z) '+ (1—y)]
— |~ B aCo.man™| =A@+ 1—7)—a 3 nCidnjae™| (2.4)

<32 (14aB)nC (8, n)an— Alati—y) < 0
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Hence, by the maximum modulus Theorem, we can see that f(z) is

in the class L’ (a, 8, v).
Finally, the result is sharp, with the extremal function being of the

form

. Blatl ~ y)
f(z)=2z (I taB)nCio, 1) 2 for n=2. (2.5)

Corollary 2.2. Let the function f(z) defined by (1.10) be in the
class L% (a, 8, v). Then

Blat1—y)
ap < (I+aB)nCio.n) for n=2. (2.6)

The equality is attained by the fonction f(2) in (25)
Theorem 2.3. Let

fi(z)== and (2.7)

e Blati—y)
fa(z)=2 (I1aPInCeo. n)z" (n=2). (2.8)

Then f(2) is in the class L’ (a, £, y) if and only if it can be expressed
in the form

[(2)=3 dafa(2), (2.9)
where A,=0 for n= 1,2, 3,--- and

S A=1. (2.10)

A==}

Proof.  Assume that

=3 e Blatl-y)
f(z)“;'\ﬂfn(z) =2z ’g (1_'_“3)“0(6\1 n) A’l’}zn (2.11)

=z—g 2"
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where
. (a+1—7v)
0™ (14-aB)nC(d, n) &
Then we observe that
- (at+1—7v)
Z"Z( 1+afB)nC(S, n) (1+aB)nC(d, n) A

=Bla+1-7)3 A

=B(a+-1—y)(1-A) £ Blati—y)

61

(2.13)

This shows that f(z) € I’ («, £, y) with the aid of Theorem 2.1.

Conversely, assume that f(z) is in the class L (e, £, ¥), remembering

the formula

3 (I+aB)nC(d, n)

<
& fati—y =7
from Theorem 2.1. We may set
A = (I+aBnC(, n) (n22)

(ati—y) ™
and we have from (2.10), that is,
S A= 1.

Setting

we have the representation(2.9). Thus we have theorem,

3. Distertion Theorems

(2.14)

(2.15)
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Theorem 3.1. If the function f(z} defined by (1.10) is in the

Ls;"(a, B, v), and either Oéd‘S% or |z|§—%, then

__Blatl—y) »
[f(z)| =max {0,'2' 2(1+aB)(1—8) |2] }, (3.1)
ﬁ(a-}-]—)’) 2
£z é]z|+4u+aﬂ)(1_a) =] > (32)
The bounds are sharp.
Proof. By virture of Theorem 2.1, we note that
L Blati—y) - .
if(z) 2 max {0,j2] — max T LaBInC@. 7 EW (3.3)
Blati—y)
)< lel+ max T | | (34)
for 2€ U. Hence it suffices to deduce that
__ Blatl-y)
G, a, B, y,|2|, n)= (T+aBInCd. m) B (35)
is a decresing function of n (n=2). Since
c@, ntn="T1"2 ¢, n), (36)

we can see that, for |z]| ¥ 0,
G@, a, B, v,|2|, m2G@, a, B, v,|2}, n+1f and only if (37)
H(S,|2|, n)=(n+1)(n+1—25)+n*|z| 20 (3.8)

it is easy to see that H(d',|z| , n) is decresing function of ¢ for fixed
| z|. Consequently it follows that

H@ 2|, n) = H(5/6,)2], n) = n*(1— z)+Y4(n—2) = 0. (39)
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for 0=48<5/6, zeJ and n=2.

Further, smce H(J, |z|. n) is decresing in|z| and increasing in n,
we obtain that

H(@S,|z}, n) > H(1|z|, n) = H(I, %, 2) = 0 (3.10)

for 0=8<1, |z] < % and n=2. Thus max G, a, 8, vzl n)
b 1

is attamed at n=2,

Finally, since the functions fu(z) (n=2) defined in Theorem 2.1 are
the extreme points of the class L% (a, B, y), we can see that the
bounds of the theorem is attained by the function f.(z), that is,

=2 o ek (1—0)

(3.11)

Theorem 3.2. If the function f(z) defined by (1.10) i1s in the
class L’s (a, B, y) and either 0=Jd<5 or|2| < )5, then

Bla+t1—7v)
2(1+afB)(1—d)

Blat1—y)
2(1+af3)(1—9)

1—

Mg\;’(z)} <1+ |2} (812)

The bounds are sharp,
Proof. It 18 similar to Theorem 3.1.
4. Some results of convolution

Theorem 4.1. L;(«, 3, y) is subclass of S
if and only if 06K Y5

Proof Note that the function f(z) defined by (1.10) is in the
class S if
>nlan S 1([6]). (4.1)

Hence it suffices to prove that

(1+aB)C@.n) = BlatI—y) (4.2)
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for the 0=d=!% and n=2 by means of Theorem 2.].
Since (¢, n)=C(}4, n)=1 for 0=F=)4, we can see that,

for 0=0< %,

(I+aB)C@, n)—flat+i—y) 2 (I+aB)—Blatl—-y) 2 0. (4.3)

Conversely, if we assum d>)4, then lim C(d, n)=0.
Taking the function fu(z) given by (2.8), we have

N3 /)’(G"I-I—’}') R
e =1— bl = o (4.4)

(1+aB)C(S, n)
Bla+1—y)

for 2=

which is less than one for n sufficiently large. Thus f.(z) is not univalent
for d> 145 and n=n(a) sufficiently large,

Theorem 4.2. Let the function f(z) defined by (1.10) be in the
class L'; (@, B, y) with 0=d<)4, then f(z) is a starlike of order 7

(0= 7<I)in the disk|z| <r, where

_ (I+aB)(1—7)nC(d, n) \1j(n—1I)
i n:r?flu { ﬁ(a‘*‘l‘_'}’)(ﬂ—‘r) } (4.5)
Proof It is a sufficient to show that the values for i);,é?— lie

in a circle with center at 1 whose radious is I—7 for z<r,.

(4.6)

L s Sn—Dladzd™
f(z} o 1_2 ia"‘"zin_l
Thus|5%‘1 —1| < 17 ¢
Stn—Dladfe] ™ < (1-7){1—Faz| ")

n=2

which is equivalent to



ON CERTAIN CLASS OF ANALYTIC FUNCTIONS 65
DEFINED BY CONVOLUTIONS

n—r
1—7

( Haafjz|®" = 1. (4.7)

By virture of Theorem 2.1, we need only to find values of |z| for which
the inequality

(1+aB)nC(é, n)
Blat+1—y)

(oo)|zm= (48)

Solving (4.8) for |z, we obtain the result.
Theorem 4.3 Let the function f(z) defined by (1.10) be in the

class L's (a3, v) with 0=6<!4. Then f(z) 1s convex of order r(0%
< 1) in the diskjz] <r, wirere

— (1+aB)(1—-7)C(S, n) 3
= nel)?f:’u ﬂ(&"f-l—y) (fl_'f) }1/(1 1) (4.9)
5. Fractional Calculus

We need the definitions of fractional derivatives and fractional
integrals which were defined by S, Owa([4]).

Theorem 5.1. Let the function f(z) defined by (1.10) be in the
class L% (o, B, y) with 0=d<4." Then

- 210t Bla+1—y) )

D27 )| 2 5y 2ETh L fad) i e ) 24 (B
-A [z] 2 Bla+1—y) o

| Dz f(2)|-§—_‘“—_*r(2+l) {1+ 2T (1B I=2) } (55)

for A>0 and z€ U The bounds are sharp.

Proof. It is easily known that

& Dt DIEAR) oy

g L
2" f(z)= e+ z {2 rgiz I'in+1+y)
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Now, we consider the function

Fley=z—3, LOADIEED) (o 250, (56)

Tt 144
We not that
A DrE+d) 2
STt S 2 6.7)

for A>0 and n=2, and C(@, n+1) = C@, n) for 0=5=<)4 and n=2,
Since f(z) € L’y (a, B, ¥), by using Theorem 2.1, we obtain

P 1t — 112 s L EDI2HA) (5.8)
A== oy <=1 :5-;2- F(n_{_z_*_l) =i \eid
22| —(=2<)|2|* 32 a
_ 2'*‘1 N2 .
2Iz| _ ﬁ(d-‘l‘l—‘}’) |212
= = eI (I FaB)(1—5)
< 2 & Mn+1)T(24A)
[F(z)|= |2] +]e} Z; Tntidn) o (5.9)
é [ ! 2+l) lzl 22: an

2240 (1+aB)(1—6) 1zf

which gives (5.5)
Further, taking the function f(z) defined by

Blatl-d)
4(1+aB)(1—-8) ~’

f@)=z—

we can see that the bounds of the theorem are sharp.

Theorem 5.2. Let the function f(z) defined by (1.10) be in the
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class L (a, 8, y) with 0£6<Y4. Then

A fz12 o Blat1+y) S
| Dz f(z)} = rie—h {1 25— 2)(15ah) (1=9) |21} (5.10)
and
A jz1'? Bla+1—y)
[D; f(2)] < T(3—%) {1+ 2o Al tan) (=8 |4 Lo (511)

The bounds are sharp.
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