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ON AN IDENTITY RELATED TO
THE HOMOMORPHISM
CLOSURE PRORERTY

Jung R. Cho

O. Introduction

Let Hom(H,G) be the set of all homomorphisms of a group H into
amotherproup . For ¢ amd % in Hom(H,G), define a mapping ¢
+#:H—>G by (¢+¢)(x)=¢(x)-+¥(x) for all x in H. It is shown that
¢+ 1s again a homomorphism if G is abelan. In fact, Hom(H,G)
is a group under this operation for any group H if and only If G
is abelian ([3],(4],[5]). Furthermore, Hom(H,G) is abelian for every
group H in that case, In this paper, we will generalize the condition
on a universal algebra for Hom(B,A) to be an algebra of the same
type as A and B. As in the group case, this condition is simply given
by an identity, called the medial law It is assumed that the readers
have basic concepts of universal algebra, such as f(ypes, subalgebras,
homomorphisms, congruences, direct products. For terminology and defi-
nitions one can refer to [2] or [7].

1. Preliminary Definitions and Theorems.

A unwersal algebra (or algebre in short) is a pair (4,}) where A
s a set, called the underlying set of the algebra, and (1 is a set of
mappings f: A" > A, n depending on f. Each of these mappings is called
an operation of the algebra. If f € Q is a mapping of A" into A,
n 1s called the arity of f and denoted by a(f).

From now on, we will use only the underlying set A for the algebra
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(A, Q) dropping out the operations if doing so does not make and
confusion,

Let (A,0)) and (B,(}) be algebras of the same type and let Hom
{B,A) be the set of all homomorhisms of B into A. For every operation
f € Q with arity n and for homomorphisms ¢, *.@n in Hom (B,
A) define a mapping f (¢,@"9n) : B—A by

f(@u@2 - Pu) (B)=F(@1(5),92(b) . @n(D))

for all b€ B If f (¢, -",#n) 1s again a homomosrphism for each operation
f, for all @, in Hom (B,A) and for every algebra B, we say the
algebra A has the homomorphism closure property (HCP for convenience).
Thus, in this case, Hom(B,A) is also an algebra of the same type
as A and B.

Let us investigate this property a little farther with groups. If H
and G are groups, for ¢ and ¥ in Hom(H,G), define ¢+#:H—G by
(g9} (x)=9(x) for all x€ H It can be easily seen that ¢+% is also
a homomorpism provided G is abelian, That is, every abelian group
has the HCP. Under this operation, the zero mapping sending every
element of H onto the identity element of (G is the identity element
of Hom(H,G). For ¢ in Hom(H,G), define —¢(x)=—(¢(x)), and
—¢ becomes the inverse of ¢ under this operation. The associativity
follows trivially. Obviously, ¢+3¢=¢—+% Thus if G is abelian, Hom
(H,G) is also an abelian group. Conversely, suppose G has the HCP.,
Let mm,:GXG—>G be the projections given by m(x,y} =x and =,
(x,y)=y for all x,y€ . By the HCP of G, n,-+n, is a homomorphism,
Thus for any x,y€G,

ty=m{x,y)+m{x,y)
=(m ) (x,y)
=(m+n,)((0,y)+(x.0})
=(m+m,)(y,0) 4+ (7y+m,)(0,x)
=m(0,y) +7,(0,y)+m(x,0)+m,(x,0)
=y-+tx,

which says G is abelian. Thus, for groups, the HCP is equivalent
to being abelian.
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2. The HCP and the medial law.

For an n ary operation f and an m-ary operation g of an algebra
A, we say f and g commute each other if

f(g(an;aw'":alm);g(%%'";am),"‘:g(anu Gre,"" ':anm))
zg(f(a‘ll:aﬂ " ',am) ’f(am,azz,’“,am).' h :f(alm) a’va' M ’,anm))

for all a,€ A, 1=12,---,nj=1,2,---,m. An algebra is called medial if
every pair of operations (not necessarily distinct) commute each other.

A guoupoid is a set closed under a binary operation defined on
it. For a groupoid, the medial law can be writlien as (x+y)+(x+w)
=(x+z2)+(y+w).

Lemma 2.1. {Murdoch [9]). Every medial groupoid with an identity
element is a commutative monoid,

Proof If o is the identity element,
1+y=(o+x)+(y+o)={(o+y)+(x+o)=y+=x,
and the groupoids is commutative, and
r+Hy+a)=x+o)+(y+a)=(xty)+(ot2)=(x+y)+z
which makes the groupoid associative,[]

Suppose A is a medial groupoid and B any groupoid. For any ¢,
¥ € Hom(B,A) and x,y€B,

(p+P) (x+y)=@(x+y)+(x+y)
=(p(x)+o(y))+(p(x)+¥()
=(p(x)+¥(x)+{py)+¥(H)
={(p+P)(x)+(p+¢)(¥).

Thus, ¢+ # is also a homomorphism and so A has the HCP, In fact,
for groupoids, the medial law, not the commutative law, implies the
HCP. We state a theorem for groupoids.

Theorem 2.2. {Evans [4]). The following four canditions are equivalent
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any groupoid A.
i }JA is medial;
ii JA has HCP:
i1)If ¢ and ¢ are in Hom{A% A), then so is ¢+¥;
iv )The mapping (x, y)—x+y is a homomorphism of A? into A.

Generalizing this theorem to general algebraic systems, we have
the following theorem,
Parts of the theorem appeared in [6] and [8].

Theorem 2.3. The following four conditions are equivalent for any
algebra A.

1) A is medial;

ii YA has HCP:

mi)If / is an n-ary operatomrand @, @, are homomerphisms

of A" into A, then f(¢,®; @, is also a homomorphism of A"

into A;

iv}If f is an n-ary operation on A, then f€ Hom(A™A).

Proof. 1)=ii). Let f be an n-ary operation, B be any similar
algebra and ¢,@,-9n € Hom(B,A). For any m-ary operation g
and b€ Bi=12,---,m,

f(®192 P (8(bu b+ b))

=fle\(g(by. b~ ,bm)), -+ Pr(g(bs,by -, bm}))

e L CACH R ACHRER N (™ ) RIS E@a(b)eal(bs), -, @n(bm)))
=8 (01),22(by),*@u(b)) e S0 (ba), o (bm),  8nlbm) )}
=g(f(Pr@2 s Pn) (b)), -+ £ PPy 20} (b)),

proving f(@,@. **@n) is a homomorphism, ii )=>iii ). Obvious. iii)=
iv). Let { be an n-ary operation and =, be the i-th projection of
A™ onto A, then clearly =;is a homomorphism, Then f(m, .+ 7q)
is a homomorphism of A” into 4 and

F(my oy = t0) (X1, %0, -, %n) = (X0, %22 -, Xn)

for all x,x,,->-,xn€ A. Thus {(x,%,*,xn)—>f(%,%,"**,Xn) I8 a homomor-
phism of A" into A. 1w ) = i). The condition iv) simply says that
every operailon is a homomorphism of a direct product of A into
A. Bat, a homomorphism is nothing more than a mapping commuting



ON AN IDENTITY RELATED TO THE HOMOMORPHISM 53
CLOSURE PRORERTY

with all operations, Thus, A is medial.[]

As we noted, homomorphisms of a group into an abelian group
form an abehan group.

Likewige, we say little more for medial algeras.

Theorem 2.4. If A is a medial algebra and B is any algebra of the
same type, then the set Hom(B,A) is also a medial algebra of the
same type.

Proof Hom(B,A) is closed under all operations by the preceding
theorem, Suppose f and g be n-ary and m-ary operations, res-
pectively, Let ¢, € Hom(B,A) for :=12,-,n and j=12,---m.
Then,

f(8(PuPrzy "\ Pum), &(PrnyPrzy " *Prnm) } (8)
=f(g{Pu(0),Pr(b), * Prm(b) -+ £(Po (), Pro(b),- . Prm(5)))
=g({(pu(b).@al(b), -, Peu(b)- -+ J@m(D) . m(B), - Pom(b)))
=g(f(PuPas " Prr) et J(PronePors o) ) (D)

for all » € B Thus,

f(e(uP2 " Pum), w0~ 8(Pr,Przy **Prm))
=g (f (?us‘/’ms’ " ‘ﬂ’m) P 'f (¢ll’l’h¢2m’° o ,?’nm) )

and so f and g commute as operations on Hom(B,A). That is, Hom
(B,A) is medial.[]

Example 2.5. A vector space V over a field F can be treated as
a universal algebra with a binary operation and a unary oreration
for each element in ¥ The commutativity of the field, the com-
mutativity of the addition of the vector space, and the distributibity
make these operations commute one another. That is, vector spaces
are medial. Thus, the family of all homomorphisms, which are linear
transformations, of a vector space into another is again a vector
space,

An algebra A is said to have the endomorphiom closure properiy

(ECP, in short) if f(¢,@, @) is an endomorphism for every operation
f and endomorphisms ¢,@,, %n of A
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Corollary 2.6. Every medial algebra has the ECP and the family
of all endomorphisms of the algebra is also a medial algebra of
the same type,

3.The ECP and varieties.

A word(or term}in symbols X={ix,x,x,+-}is an expression built
up from X using operations inductively as follow: every element
in X is a word, and if f is an operation and u,u,, ", ua;n are words
then f(u,u., ", uas) is also a word, It is easy to see that every
word « defines a derived mapping of a cartesian product of A into
A in the natural way of substitutions. A mapping of an algebra
derived from a word is called a term function. In this reason, a word
is sometimes called a polynomial. An identity(or law)is an equation
u=v for some words « and v. An aigebra (A,{})issaid tc satisfy
the identity u=v if u and v derive the same term function, that
is, u(a,0, " ,00)=v(C,a,"~,an) for all a,a,, " ,an€ A. We say an algebra
satisfies a set of identities if it satisfies every identity in the set.
A variety V is a class of similar algebras such that

i Wif A €V and B is a subalgebra of A, then B ¢V;

it)if A €V and B is a homomorphic image of A, then B € V;

ii)if AjeV for 1€, then X{A;jteI}eV.

An algebra A in a variety V is called V-free on a generating
set X provided that every mapping of X into any algebra B in
V can be extended to a homomorphism of A. This generating set
is called a free generating set of A.

Lemma 3.1 ([1}). Every variety V has a V-free algebras on every
set of generators, and V-free algebras are uniquely determined up
to isomorphism by the cardinalities of their free generating sets,

Lemma 3.2 ([1]). Let V be a variety and A be a V-free algebra,
I u(e,a., - ,0n)=v(a,a, " ,an) 1S a relation among elements a,a,,,
tn of a free generating set of A.

Then, (X%, ", %0)=0(%:,%,""",%Xg} is an identity satisfied by all al-
gebras in V.

By corollary 2.6, every medial algebra has the ECP. However,
the ECP does not implies the medial law in general ({3]). Thus,
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an algebra may have the ECP while it satisfies ‘weaker’ identities
than the medial law, But for varieties, if all algebras in a variety
have the ECP, then every algebra in the variety must be medial,
as the following theorem asserts,

Theorem 3.3. Let V be a variety of algebras. Then every algebra
in V has the ECP if and only if every algebra in V is medial

Proof. The necessity is clear by corollary 2.6. For the converse,
suppose every algebra in V has the ECP and let f be an n-ary
and g be an m-ary operation. Take the V-free algebra F on the
free generating set {a,{1=1,2,-,n,j=12,--m} For each i=12,--
n, let ¢, be the endomorphism of F such that ¢(a,)=a; for j=1I,
2,.--,m, which exists due to Lemma 3.1.Then, by the definition of
f(¢1;¢2&' ) 'yﬁ"n),

f(en®ey - #0) (8(Qn. G, - ;aim))

=flp(glaau - .am)), "+ Pn(g(an, 80, ",&m)))

=f(g(p:(an) Prlaw), . (tm), - 8(Palan) . Palaw), . Palam)))
=f(g(a.qp. " ".@m), " .8(Gm, @nz,",Gnm))-

On the other hand, since f(¢,@,--.¢n) Is an endomorphism.

[(Pu@e - P} (8(an, 0, ", 0um))

=g(f(Pupa - Pn)(an), (P Pay P} (Qum))
=g(f(e{an).Pan), - Pnlan)), -+ - J(o(am) . @:(am), . Pal@m) })
=g(f(ay,an, - am). "+ H{m. Cm,* +*,@nm) )

Thus,

flela,ap, - aum), === L&(Cm, e, **,8am) )
=g(f(au,aun,"**,an). -~ f(eam,@m,* **,Gnm))

By Lemma 3.2, every algebra in V satisfies the identity,

f8{x0, X0, Xym), o E(Xng,Xoe " Xam))
=g(f(xn,%Xn, >, %n), ="+ S(m, Xam,” -+ Xam) )

That 18, f and g commute each other. Hence every algebra in V
is medial{]
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Corollary 3.4. The medial law is the weakest law for a variety to
have all ite members medial.
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