V-RINGS DETERMINED BY POLYNOMIAL RINGS

Chol On Kim

Let R be a ring with identity. A nonzero left R-module M is called urreducible (or simple) if O and M are the only R-submodules.

If R is a division ring, then $R[\mathrm{x}]$ is a principal left and right ideal doman. For an irreducible right $R[\mathrm{x}]$-module $M, M \simeq R[\mathrm{x}] / I$ as a right $R[x]$ modiale and I is a maximal right ideal of $R[x]$ But since $R[\mathbf{x}]$ is a principal ideal doman, there is a monic polynomial $f(x)$ in $R[\mathrm{x}]$ such that $I=f(x) R[\mathrm{x}]$ Now say deg $f(x)=n$. Then the rreducible $R[\mathrm{x}]$-module $M=R[x] / I$ is generated by $1+I, x+I, \cdots$, $x^{\mathrm{n} \cdot 1}+I$ over R as an R-module.

By this well-kown standard fact, it is quite natural to rase the following question at least when R is a simple.

Question 1. Suppose R is a simple ring. Then is every irreducible right $R[x]$-module finitely generated R-module?

But the following example by Resco[7, Example 3.3] nullifies our hope for the affirmative answer for the above question.

Example 2 [Resco]. Let k be a field of characteristic zero and let $K=k[[\mathrm{x}]]$ be the ring of power series over k. Then K is a domain. Now let $L=k((z))$ be the field of fractions of K. Let $d \cdot K \rightarrow k$ be ordinary differentiation and extended d to L in the usual manner. Let $A=$ $K[y, d]$ the differential operator ring over K. That is, A is free left K-module with basis $\left\{1, y, y^{2}, \cdots\right\}$ and with multiplication extended from K via $y a=a y+d(a)$ for every a in K Also $B=L[y . d]$. Define a $A[x]$-module structure on B; for b in B and $f=\sum x^{3} a_{1}$ in $A[x]$, define

[^0]$$
b \cdot f=b\left(\sum x^{1} a_{i}\right)=\sum z^{-1} b a_{i}
$$

Then B is a right $A[\mathrm{x}]$-module. Moreover B is an irreducible faithful $A[\mathbf{x}]$-module. But B, as a right A-module, is not finitely generated.

But despite of the above pathological example, we are able to give an affirmative answer to our Question 1 in some situaion. Indeed we observe several cases for which every irreducible $R[\mathrm{x}]$ -module is a finitely generated R-module.

Definition 3. For a ring R, a right R-module M is called bounded if the annihilator $\operatorname{Ann}_{\mathrm{R}}(M)$ of M in R is nonzero.

For example of bounded modules let D be a division ring with the center ffeld F. As we have known that, if D is not purely transcendental over F, then the polynomal ring $D[\mathrm{x}]$ over D is not primitive. So in this case every irreducible $D[\mathrm{x}]$-module is bounded. For, if it were not, then there would exist an irreducible $D[\mathrm{x}]$-module M with Annmx| $(M)=0$. Thus M is a faithful $D[x]$-module and so $D[\mathrm{x}]$ is primitıve. But this is a contradiction.

The following lemma is a well-known standard fact.
Lemma 4 [Bergman]. Let S be a finite centralızing ring extension of a ring R. If M is an irreducile S-module, then as a R-module, M is a finite direct sum of irreducible R-modules.

The following theorem gives an affirmative answer to Question 1 in some circumstance.

We recall that an overring S of a ring R with same identity is called a centrallzing extension of R with finte basts if S is finitely generated as an R-module with centralizing finite basis $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$, that is,

$$
\begin{aligned}
& S=\sum_{2=1}^{\mathrm{n}} r u_{1} \text { with } r u_{1}=u_{1} r \text { for each } r \text { in } R, t=1,2, \cdots, n \\
& \text { and if } r_{3} u_{1}+r_{2} u_{2}+\cdots+r_{n} u_{0}=0 \text {, then } r_{1}=r_{2}=\cdots=r_{\mathrm{n}}=0
\end{aligned}
$$

Theorem 5. For a simple ring R any bounded irreducible right
$R[\mathbf{x}]$-module is a finite direct sum of irreducible R-module. So it is finitely generated as a right R-module. Moreover, any bounded irreducible right $R[\mathrm{x}]$-module never be a projective R-module unless R is right Artinian.

Proof. Let M be a bounded irreducible right $R[\mathbf{x}]$-module. Then there is a maximal right ideal I of $R[\mathbf{x}]$ such that M is $R[\mathbf{x}]$ - module isomorophic to $R[\mathrm{x}] / I$. Now since M is a bounded $R[\mathrm{x}]$ - module, $A=\mathrm{Ann}_{\mathrm{Rix} j}(M)$ is a nonzero ideal of $R[\mathrm{x}]$ contained in I. Pick

$$
g(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

a nonzero polynomial in A with the least degree. Then sunce we may assume $a_{\mathrm{n}} \neq 0, R a_{\mathrm{n}} R$ is a nonzero ideal of R. By our assumption since R is simple, $R a_{\mathrm{n}} R=R$ so we have

$$
I=c_{1} a_{\mathrm{n}} d_{1}+c_{2} a_{\mathrm{n}} d_{2}+\cdots+c_{\mathrm{k}} a_{\mathrm{n}} d_{\mathrm{k}}
$$

for some a_{1} and d_{1} in $R, t=1,2, \cdots, k$. Thus

$$
f(x)=c_{1} g(x) d_{1}+c_{2} g(x) d_{2}+\cdots+c_{\mathrm{k}} g(x) d_{\mathrm{k}}
$$

is a monic polynomial in A with the least degree. Now for any r in $R, f(x)-f(x) r=0, \imath e, r f(x)=f(x) r$ for any r in R. Hence $f(\mathrm{x})$ is a monic central polynomial in $R[\mathrm{x}]$. In this case we may use the division algorithm with $f(\mathrm{x})$ and get $A=f(\mathrm{x}) R[\mathrm{x}]$ since $f(\mathrm{x})$ is monic central. Now if we denote F the center of R, then F is a field and

$$
R[x] / A=R \otimes_{\mathrm{F}} F[x] / f[x] F[x]
$$

But since F is a field, as a vector space over $F, F[x] / f[x] F[x]$ is generated by $1+f(x) f[x], x+f(x) f[x], \cdots, x^{\mathrm{n}-1}+f(x) F[x]$, where n is the degree of the polynomial $f(x)$ Therefore $1+f(x) R[x], x+f(x) R[x]$, $\cdots, x^{n-1}+f(x) R[x]$, i.e., $1+A, x+A, \cdots, x^{n-1}+A$ is a finite centralizing element of $R[\mathrm{x}] / A$ over the ring R. Now since M is an irreducible $R[\mathrm{x}]$ -module and $A=\mathrm{Ann}_{\mathrm{R} \mid \mathrm{x}} M$, considering M as an $R[\mathrm{x}] / A$-module it is also an irreducible $R[\mathrm{x}] / A$-module. But since $R[\mathrm{x}] / A$ is a finite centralizing extension of R, irreducible right $R[\mathrm{x}] / A$-module M is a finite direct sum of 1 rreducible right R-module by Lemma 4. Therefore this $R[\mathrm{x}\rfloor$-module M is finitely generated as an R-module.

Moreover, if M is a projective R-module considering as a right R module, then its irreducible R-direct summand is also a projective R-module. So the $\operatorname{Socle}(R)$ the sum of the minimal right ideal of R is nonzero because any minimal right ideal of R is R-isomorphic to an irreducible R-direct summand of M. But since R is simple, Soc $(R)=R$. Thus R is simple Artinian. Therefore a bounded irreducible right $R[\mathrm{x}]$-module never be a R-projective module unless R is Artinian.

Corollary 6. Let R be a simple ring, Then if the polynomial rung $R[\mathrm{x}]$ is not promitive, any irreducible right $R[\mathrm{x}]$-module is a finite direct sum of irreducible R-modules.

Proof Since the polynomial ring $R[\mathrm{x}]$ is not primitive, any irreducible right $R[\mathrm{x}]$-module should be bounded. Therefore it follows immediately by the proof of Theorem 5 .

By the hint of Theorem 5 we are able to come to the consideration of ring R such that every irreducible $R[\mathrm{x}]$-module is a projective R-module. The forthcoming result may characterize semi-simple Artiman ring in a new way via $R[\mathrm{x}]$-module structure. Roughly speaking, the R-projective module property of irreducible $R[\mathbf{x}]$-modules influences very strongly on the ring structure of R so that the ring R becomes semisimple Artinian ring.

Theorem 7. The followings are equivalent.
(i) Every irreducible right $R[\mathrm{x}]$-module is a projective right R module.
(ii) R is semisimple Artmian.

Proof (it) inplies (i). Suppose R is semi-simple Artinian. Then any right R-module is projective. So it is obvious.
(i) mplies (ii). Assume that every ireducible $R[\mathrm{x}]$-module is a projective right R-module. Define a map θ from $R[\mathrm{x}]$ to R by $\theta(f(x))$ $=f(0)$ for $f(\mathrm{x})$ in $R[\mathrm{x}]$. Then θ is a ring epımorphism. We claum that every irreducible R-module is a projective R-module. Now for an irreducible right R-module R / B with B a maximal right ideal B of R, let

$$
I=\{f(x) \in R[x] \mid \theta(f(x)) \in B\} .
$$

Then since B is a right ideal of R, I is a right ideal fo $R[\mathrm{x}]$ and I contans a two-sided ideal $x R[x]$ of $R[x]$.

Pick $f(x) \in R[x]-1$. Then $f(0) \in R-B$ and so $f(0)+B$ is a generator of R / B i.e, $(f(0)+B) R=R / B$. In this case $R[x] / I$ is generated by $f(x)+I$ For, if $g(x)+I$ is in $R[x] / I$, then $g(0)+B=f(0) r+B$ for some r in R . Hence $g(0)-f(0) r$ is in B and therefore $g(x)-f(x) r$ in I. So $g(x)+I=(f(x)+I) f=f(x) r+I$ This means that $R[x] / I$ is an irreducible $R[\mathrm{x}]$-module.

Now as R-modules, $R[x] / I$ is isomorphic to R / B. For if we define $\bar{\theta}: R[x] / I \rightarrow R / B$ by $\bar{\theta}(f(x)+I)=f(0)+B$, then it can be straightfowardly checked that $\bar{\theta}$ is an R-isomorphism. So $R[x] / I$ is a cyclic R-module. Now by assumption, since $R[x] / I$ is a peojective R-module and so is R / B. Therefore every irreducible R-module is projective. Hence every maximal right ideal is an R-direct summand of R hecause the exact sequence

$$
O \rightarrow B \rightarrow R \rightarrow R / B \rightarrow O
$$

of R-module with B a maximal right idedal of R is splitted.
Finally to finish our proof, let J be a right ideal of R and let K be a maximal complement of J in R , that $1 \mathrm{~s}, \mathrm{~K}$ is a right ideal maximal with respect to the property $J \cap K=O$. Actually, the existence of maximal complement is assured by Zorn's lemma. Then $J+K=J \oplus K$ is an essential right ideal of R . If $J \oplus K \leqq R$, then there is a maximal right ideal M of R such that $J \oplus K \subseteq M \subseteq R$ In this case M is essential smee $J \oplus K$ is essential. But by our uesult in the previous paragraph M is a direct summand of R. This is impossible and so $J \oplus K=R$ Therefore every right ideal J of R is an R-direct summand of R. Hence R is semisimple Artinian ring.

As in the proof of the above theorem a ring whose every irreducible R-module is projective is simple Artinian. With this fact the following definition may be of interest.

Definition 8. A ring R is called a right V-ring if every right irreducible R-module is injective.

In the process of the proof for Therem 7, we get following.
Theorem 9. If every irreducible right $R[x]$-module is an injective R-module, then R is a right V-ring.

By this result we may consider its converse.
Lemma 10 [Armendariz and Fisher]. Let R be a P.I-ring. Then R is a von Neumann ring if and only if R is a V-ring.

Lemma 11 [Posner]. Let R be a prime P.I-ring. Then R has the classical right quotient ring $Q(R)$ which is simple Artmian. Also in this case $Q(R)$ is the classical left quotient ring and $Q(R)=R F$, where F is the center of the simple Artinian ring $Q(R)$. Moreover the field F is a field of fraction of the domain $Z(R)$.

Lemma 12. Every prime, von Neumann regular P.I.ring is simple Artınian.

Proof Let R be a prime, von Neumann regular P.l.ring. Since R is a von Neumann regular rıng, then so is $Z(R)$. Now let $0 \neq a \in$ $Z(R)$, then there is b in $Z(R)$ such that $a=a b a$ But since R is prime, so is $Z(R)$ and hence $Z(R)$ is a commutative domain. From the fact $a=a b a$, we have $a(1-b a)=0$ in $Z(R)$ So $l=b a$, since $a \neq 0$. Thus $Z(R)$ is a field. So the center F of $Q(R)$ is $Z(R)$ by Lemma 11. Thus $Q(R)=R F=R Z(R)=R$ and so R is simple Artinian by Lemma 11.

Lemma 13. Let R be a P.I.-ring. Then the followings are equivalent.
(i) Every irreducible right $R[\mathrm{x}]$-module is fimtely generated over R as a module.
(ii) Every promitive factor ring of $R[\mathrm{x}]$ is finitely generated over R as a module.

Proof (i) :mplies (ii) Suppose every irreducible $R[\mathrm{x}]$-module is a fintely generated R-module. Let A be a two-sided ideal of $R[\mathrm{x}]$ such that $R[\mathrm{x}] / A$ is a primitive ring. Then the ring $R[\mathrm{x}] / A$ is a primitive P.I-ring and so it is simple Artinan by Kaplansky. So the ring $R[\mathrm{x}] / A$ has a minumal right ideal I_{0}. In this case I_{0} has the form I / A with $A \subseteq I$ and I is a right ideal of $R[\mathrm{x}]$. We claim that I / A is an irreducible $R[\mathrm{x}]$-module. By the module structure defined by

$$
(f(x)+A) g(x)=f(x) g(x)+A
$$

for $f(x)+A$ in I / A and $g(\mathrm{x})$ in $R[\mathrm{x}], I / A$ is a right $R[\mathrm{x}]$-moduie
compatible with the original module structure of I / A as $R[x] / A-$ module. By this newly induced module structure on I / A, since I / A is an irreducible $R[\mathrm{x}] / A$-module, I / A is an irreducible $R[\mathrm{x}]$-module. Finally, since

$$
R[x] / A \simeq \oplus \sum I_{0}
$$

as $R[\mathrm{x}]$-module and I_{0} is finitely generated as R-module by assumption, we have that $R[\mathrm{x}] / A$ also is finitely generated as an R-module.
(ii) implies (1) Suppose every promitive factor ring of $R[\mathbf{x}]$ is finitely generated as an R-modle. Now let $M=R[x] / N$ be an irreducible $R[\mathrm{x}]$-module with N a maximal right ideal of $R[\mathrm{x}]$. If $A=\mathrm{Ann}_{\mathrm{R}(\mathrm{x} \mid}$ (M), then $R[\mathrm{x}] / N$ is a faithful irreducible $R[\mathrm{x}] / A$-module. Hence $R[\mathbf{x}] / A$ is a primitive P.I.-ring. do $R[\mathbf{x}] / A$ is simple Artiman by Kapiansky and hence $A \neq 0$ Now as $R[x] / A$-module we have

$$
R[x] / A=\oplus \sum R[x] / N
$$

since $R[\mathrm{x}] / A$ is simple Artinian and $R[\mathrm{x}] / N$ is an rrreducible $R[\mathrm{x}] / A$-module. So $M=R[\mathrm{x}] / N$ is a finitely generated R-module because $R[\mathrm{x}] / A$ is a finitely generated R-module.

As a byproduct of the abobe lemma we have the following.
Proposition 14. Let R be a P.I. - ring. Then the followings are equivalent.
(j) Every irreducible $R[\mathrm{x}]$-module is a finitetly generated R-module.
(it) Every maxamal ideal of $R[\mathrm{x}]$ can be contracted to a maximal ideal of R.

Proof (i) implies (ii) Let A be a maxmal ideal of $R[x]$. Then $R / A \cap R \subseteq R[x] / A$ and $R[x] / A$ is smple P.I. So $R[x] / A$ is sumple Artinian. By Lemma $13, R[\mathrm{x}] / A$ is a finitely generated R-module. Therefore $R[\mathrm{x}] / A$ is a finitely generated $R / A \cap R$-module. Hence $R[x] / A$ is a finite centralizing extension of $R / A \cap R$ Hence $R / A \cap R$ is Artinian, since $R[\mathbf{x}] / A$ is Artiniar. Now since $R / A \cap R$ is prıme P.I., it is simple Artinian. So $A \cap R$ is maximal in R.
(ii) umples (i) Let A be a primitive ideal of $R[\mathrm{x}]$. Then since $R[\mathrm{x}]$ is P.I., A is a maximal ideal. So by our assumption. $A \cap R$ is
a maxumal ideal of R. Hence $R / A \cap R$ is simple P.I. and so it is simple Artinian. Therefore

$$
R[x] / A=\frac{(R / A \cap R)[x]}{A /(A \cap \bar{R})[x]}
$$

is a finitely generated $R / A \cap R$-module because $R / A \cap R$ is simple Arinian. Hence $R[\mathrm{x}] / A$ is a finitely generated R-module. Thus by Lemma 13, we get our conclusion.

Now we are in the situation to characterize V-ring whenever it satisfies a polynomial identity.

Theorem 15. Let R be a P.I.-ring. Then the followings are equivalent.
(i) Every irreducible right $R[\mathrm{x}]$-module is an injective R-module.
(ii) R is a (right) V-ring.

Proof. By Theorem 9, (i) implies (ii) immediately. Now suppose R is a (right) V-ring. Then by Lemma $10, R$ is a von Neumann regular ring. For an irreducible right $R[\mathrm{x}]$-module M, let $\mathrm{A}=$ $\mathrm{Ann}_{\mathrm{R}|\mathrm{x}|}(M)$ the annihilator of M in $R[\mathrm{x}]$. Then the ring $R[\mathrm{x}] / A$ has M as a faithful irreducible module. So $R[\mathrm{x}] / A$ is a primitive ring. Our claim is that the subring $R+A / A \simeq R / R \cap A$ of $R[\mathrm{x}] / A$ is a prime ring. For this, let \bar{U} and \bar{V} be ideals f of $R / R \cap A$ such that $\bar{U} \bar{V}=\overline{0}$. Then there are ideals U, V of R such that $\bar{U}=U / R \cap A$ and $\bar{V}=V / R \cap A$. Then of course $\bar{U}=U+A / A$. So $U[\mathrm{x}]$ and $V[\mathrm{x}]$ are ideals of $R[\mathrm{x}]$, and

$$
(U[x]+A)(V[x]+A) \subseteq A .
$$

Thus $(U[x]+A / A)(V[x]+A / A)=\overline{0}$ in $R[\mathrm{x}] / A$. But since $R[\mathrm{x}] / A$ is prime, we have either $U[x]+A / A=\overline{0}$ or $V[x]+A / A=I$ in $\mathrm{R}[\mathrm{x}] /$ A. Therefore $U[x] \subseteq A$ or $V[x] \subseteq A$. Hence $U \subseteq A \cap R$ or $V \subseteq A \cap R$. This means $\overline{\mathrm{U}}=\overline{0}$ of $\overline{\mathrm{V}}=\overline{0}$. So $R+A / A \simeq R / R \cap A$ is a prime ring.

On the other hand, since R is a von Neumann rigular ring, its homomorphic image $R / R \cap A$ is also a von Neumann regular ring. Hence the ring. $R / R \cap A$ is a prime, von Neumann regular ring satisfying a polyomial identity. So by Lemma $12, R / R \cap A$ is simple Artinian. Thus the ideal $R \cap A$ is a maximal ideal.

By this argument so far done in the proof we have that $R \cap A$ is maximal whenever A is a primitive ideal of $R[x]$. But since $R[\mathrm{x}]$ is a P.I.-ring, every primitive ideal of $R[\mathrm{x}]$ is a maximal ideal. So every maximal ideal of $R[\mathrm{x}]$ can be contracted to a maximal ideal of R. But note that in the proof of Proposition 14 every irreducible $R[\mathbf{x}]$-module is a finte direct sum of an irreducible R-module whenever every maximal ideal of R.

Returning to our situation, M is a finite direct sum of irreducible R-module. Now finally by condition (ii) since irreducible R-module is injective, we have that M is an injective R-module. This completes the proof.

Example 16. Without P.I.-ness of R, Theorem 15 is not true. Let V be an infinte dimensional vector space over a field K. Let S be the socle of $\operatorname{End}_{K}(V)$, and let $R=S+K 1$ Then R is a von Neumann ring but not P.I. In this case as Villamayor and Michler pointed out, as a right R-module, V is irreducible but not injective.

References

1. F. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag. Berlm, Hedelberg, New York, 1974
2. E.P. Armendariz, On semiprime P.I.-algebra over commutative regular rings, Pacific J. Math., 66(1976), 23-28.
3. E.P. Armendariz and J.W. Fisher, Regular P.I.-rings, Proc. Amer. Math. Soc., 39(1973), 247-251.
4. J.W. Fisher and R.L. Snder, On the von Neumann regularity of rugs with regular prme factor rings, Pacrfic J. Math., 54(1974), 135-144.
5. G. Michler and O. Villamayor, On rings whose smple modules are injective, J. Algebra, 25(1973), 185-201.
6. D.S. Passman, The Algebraic Structure of Group Rings, Wtey, New York, 1977.
7. R. Resco, Krull dimension of Noethertan algebra and extension of the base field, Com. Algebra. 8(1980), 161-183.
8. L. Rowen, Polynomial Identitres in Ring Theory, Academe Perss, New York, 1983

Department of Mathematics
Pusan National University
Pusan 609-735, Korea

[^0]: Received Dec. 15, 1988.

