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A Bayesian Approach for Solving Goal Programs
Having Probabilistic Priority Structure

Suh, Nam-Soo*

Abstract

This paper concerﬁs with the case of having a goal program with no preassigned
deterministic ranking for the goals. The priority ranking in this case depends on the states
of nature which are random variables. The Bayesian approach is performed to obtain the

nondominated set of rankings.

1. Introduction

Consider the general form of the goal program :

Min Z = % Pun(d, d) (L1)
ST £ + d° -d’ = b, i=12-m (1.2)
20 d, &' =0 i=L2--m (1.3)

d- % 4 = 0, i=1,2 -, m (1.4)

where X is the vector of the decision variables, its dimension is nx1.
f:(X) is a real valued function in the decision variables

(linear or nonlinear).
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d;, d;" are the negative ~and positive devia_tional variables, respectively,
for the i-th goal
g&(d, di°) are real valued functions in deviational variables of the goal
that has a priority level k.
K is the number of priority levels.

To solve the program (1.1)— (1. 4) when g (d.], dﬁ) and f; (X) .a.re linear ﬁﬁcﬁons one
can use any of the modified simplex method (5) or the iterative apprdach 1 3 4, if gld,
d:*) and/or f,(X) are nonlinear then we can use the available methods in (1, 2, 3, §). In
all these solution methods it is assumed that the decision maker can assign a priority level
for each goal of his conflict goals. Lee (5) presented a multiple compariéon approach to
assist the decision maker_ choosing hlS rankmg Ignizio (3)_ studied the 'sensitivi.ty analysis
of the priority structure. In this paper a Bayesian approach is presented to treat.the case
of having a goal programlwith random priority étructu.re. _ _ |

Assuming that the decision maker is not sure of the rankings of his K goals: instead
his rankings for these goals is dependent on the states of nature, which Stq{e of nature
will occur? the decision maker does not know; but he knows a prior probability mass func-
tion of the states of nature, also he can draw a sample from the stat_es of nature and get
a posterior mass function for the states of nature. The following two questions will be
answered in this papr : _ A |

(1) what is the best rank for goals in the case of prior information only?

(2) what is the best rank for goals in the case of posterior information?

Thes two questions will be answered in the following two sections, section 2 and section
3, in section 4 an illustrative example is given to clarify the idea behind the ‘suggested ap-

proach. -

2. The.Best Rank of Goals Using Prior Information

Assuming that we have R states of nature (S={si, Sz ..., Su ..., S }) with prior
mass function £(S), N combirations of rankings of the K goals (D={d,, d;, ..., dj ...,
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di}) and for every state of nature S.(r=1, 2, ..., R) the decision maker can determine
the preferred rank of goals (the decision maker assigns for every element in the s_et S only
one element in the set D), silppose that this rerationship between S and D is represented

by function G:

G :S-D=(, if d; is not preferred for s.
- =1, if d; is ﬁreferred for s,

G=1, 2 ..., N, r=(1, 2, ..., R) @1

Thus G could be represénted in a matrix as follow :

Sl S, Sr . seeees Se

G = : S
. dy gu Biz .. Eir g
d.z 821 (7} o R . Em
d, En 812 . Bir: &
d | 8m 47} B 0 et g

Each element is. either v0 or 1 and the sum of each column is 1. To get the best
(nondominated) rank in the case of prior information, the following teghnique is. suggested ©
Step 1: Solve N goal programs, the first with the objective (achievement) function built
according to thev d, ranking, the second with the objective (achievément) function built
according to d,, and so on. In this step one should use the sensitiﬁty anélysis of goal
programming (the case of reordering priority levels) to reduce the computation efforts.
Step 2: let the value of g(d, d") (k=1, 2, ..., K) for the optimal solution in the
case of using the rank d;(=1, 2. ..., N) to be Gt(i), and define the vector A(j) as:



A = @*0), &*0, - &*0), - &*()
i=1,2 -, N (2.2)

Step 3 : define each of NxR vectors contains K elements and let the first vector to be
h(1,1) which represents the losses in the case of using d, then s, occurs, -the elements
of h(l,1) will be all zeros in case of having d, as the suitable rank for s, if d, is not the
preferred rank for s, then h(l,'l) =A(1). In general h(j, r) ‘could.be written as :

h(ir) =0 if g =1
= A(j) if g)'r = 0 * j=11 29 Yy N
r=1 2, -, R @23

The unique exception for this definition is that when two or more rankings have the
same optimal solution, then they must have the same losses function,

Hence the expected value of the risk when we use the d; rankings could be written as :
BG) = L hGn) * (), j=12 -, N @4

Step 4 : choose the one(s) with B(j) is nondominated from set D, this(these) is (are)
the best ranking(s).

" Definition : B(j) is said to be nondominated if there does not exist B(1), I=1, 2 ...,
N such that B(1) < B() and at least one element in B(l) does not equal its corresponding
clement in BG) = | ' - ' '

In case i}f havmg more than one best ranking the decision maker could pick up any
one of them arbitrarily or according to his risk function, let the preferred nondominated B(j)
to be B*. Since B* represents the expected value of losses when using the best rank (.e.,
when taking the best action), it also represtents the expected value of perfect

information (EVPI).

_47._



3. The Best Rank of Goals Using Posterior Information

Assuming that the decision maker is not confident in the prior information, also he can
pay for drawing a sample from S to know about S. Let the set V(V= vie Vo oeh Ve .l
ve}) represent results of the sample (V is an estimate for S from the sample observations)
and p(v., s) (W=1, 2,..., Randr=1, 2, ..., R) is the conditional probability mass
function of v. given s.(i, e., the indicator of the reliéblity of the sample results).

The posterior probability mass function of s. is:

fi(sdv) = Zp(vis) / p(v) 3.1)
where p(v)= 3 p(vls,) % f(s) , w =1, 2, ~ ,R
r = 1’ 2, 'R

The same steps of determin_ix;g the best rank in case of prior information (as presented
in section 2) must be followed to gef the best rank in the case of getting -a posterior
information except using f.l(‘s;lv.) ‘instead of f(s.) in equation (2.4).

A most important point to be studied, after the previous analysis is the posterior anal-
ysis, that is the analysis that makes the decision maker be able to know if the information
6btained from sample is worthy to pay for it. To know how extent thel sampling process
is beneficial the expected value of the sampling information (EVSI) must be calculated and
if 1s up to the decision maker to decide if this value is worthy. Before dfawing the sample
one can not know either of w(w=1, 2, ..., R) will be observed, so he also can not guess
the preferred rank of goals or its associated EVPI (B*). Since B* here is dependent on
V lé{ it to be B¥(w). It is well known that EVSI equals EVPI—expected value of losses

in case of drawing the sample, so:

-EVSI=EVPI-B* (W) x P(V.) =B*—B** (3.2)



4. An Qllustrative Numerical Example

This example is taken—with modification—from Lee’ book {6) about product mix prob-
lem, also the MICRO MANAGER Package is used to solve the goal programs generated by
applying the first step of the suggésted approach.

A company of electronics produces color TV sets. The company has two production
lines, the production rates of these two lines are 2 and 1.5 sets per hour respectively. The
production capacity is 40 hours per week for each line. The manager wants to determine
the number of hours {o run each line during a week to achieve the following goals :

(1) Meet a production of 240 sets for a week.

(2) Avoid the underutilization of regular working hours for both lines.

(3) Limit the sum of overtime operation for both lines.

The manager is not sure of the states of market, so he is not sure of his rankings for
these goals, but if the demand will be high he prefers the gbals to be ranked as they are
appeared in the sequence above. If the demand is moderate ﬁe prefers the ranking to be,
thé second goal has the first priority, the third goal ha§ the second priority, and the first
goal has the third priority. If the demand is low he prefers the goals to be ranked according
to their priorities as the third then the second then the first. The prior distribution of the
demand shows that it is high_ with the probability of 0.3, it is moderate with the probability
of 0.5 and it is low with the probability of 0.2.

The manager can ﬁpply a consultation from a ma.rketing survey office for $10, 000 charge
about the predlcted state of the demand. The predictions of thxs office is not always true.
The following table shows the reliability of the predictions of this office (i.e., how extent

these predictions were true).

High Moderate : Low
High : 0.7 0.3 0.1
Moderate » 0.2 0.6 0.4
Low A 0.1 0.1 0.5
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Now the manager wants to know the number of working hours for each line by using
the prior information .only and where it is profitable to apply the consultation from marketing
survey office or not.

The Solution---

Here we have 3 possible rankings, i e. :

D={d, d; ds}
where d,={1 23} ; d,={231) : d&y= {32 1) and 3 states of pature: -

S= {high moderate low) '

According to the information in the example the matrix G is:

5 High Moderate Low
“ T 1 0 0
d; 0 1 0
d, 0 0 1

Now by applying the suggested four steps in this paper, we can see:

Step 1: the following table shows the solutions of the 3 goal programs.

D Optimal solution Achievement function
d, 9 , 40) © 0 50
d, (40 , 40) | © 0 100)
ds (40 , 40) ' © 0 100

Step 2:in this step we rewrite the values of the achievement function by rearranging
its elements to be in the following disciplines : the first element is assigned for the
underachievement in the first gial, the second element represents the underachievement in
the second goal and the third element is to represent the overachievment in the third goal,
A =(0 050, AR =(10000) and A= (100 0 0).

Step 3:in this step we present the loss function (the opportunity cost), it is a vector
function (h(j, 1)) representé the cost of using the j—th ranking in the r—th state of nature.
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This cost is 0 if the j—th ranking is the preferred one for this state of nature, so:

h(LD) = ( 000), h(L2) = (0050, h(L) = (0050
h(21) = (100 00), h(22 = (00 0), h(23 = (00 0
= (100 0 0), h(3,2) = = (00 0

B3 1) ©0 0, h(33)

Note that, since d, and d; have same optimal solution then they have the same losses func-
tion. Also in this step the expected value df the losses for each ranking—that is B(j) —is
calculated by using the formula (2.4) : .

B(1)=(0 0 35), B(2)=(30 0 0) and B(3)=(30 0 0)
These expected values of the losses is presented to the manager {o choose the best one,
now if the manager chooses B(2) — according to ‘'some criteria or according to his
satisfication with this result and his ability to accept an average losses in his sales (30 units)
more than overutilization in line’s work hours (35 ﬁours in ?verage) —then : B*=’ 30 0
0) =EVP], and x*= (40 40) is the optimal solution in case of usmg prior information only.

Now the manager wants to know whether to bui? the Marketing Survey Office’s
consultation or not, so we are going to make a preposterior analysis for this bproblem.. By
using the information about prior probability mass function of the demand and thé conditional
probability function of the predictions of the office, it is easy to get the following results : (1)
In the case of getling the consultation from the office and the predi-ction of the ofﬁce for
the demand is “High® then the posterior probability mass function for the demaﬁd by usmg
the formula (3.1) is: - R

S l High Moderate o 'Low
ne) | 0s 04 . 0.05

and by using these posterior probabilites to calculate the expected losses for each optimal
solution of this problem we get the following B(j)'s :
B(1)=(00 22.5), B(2)=(5500) and B(3)=(55 0 0)

Again, assume that the manager prefers B(1) then:
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B*(1)=(0 0 22.5) and X*=(90 40)
(2) In case of getting the consultation of the office and the prediction is “Moderate®, by
using the same approach as in (1) we get:

B*(2)=(14 0 0) and X*= (40 40)
(3) Finally, if the manager gets the consultation from the office and the prediction is “Low”
then :

B*(3)=(17 0 0) and X*= (40 40)

By calculating the probability mass function of the predictions of the office we get :

Prediction (w) | High Moderate Low
P (w) KX 0. 44 0.18

and, the expected value of losses in case of getting the consultation of the offic_e is : |
B**= B*(w) *p(w) = (9.22 0. 855) |

and, the expected vélué of gétting the consultation is :
EVSI=B*—B**= (20.78 0. —8 55)

It is up to the manger to decide whether this EVSI is worthy to pay $10,000 for the office

or not,

5. Conclusion

This paper is the first trial in discussing the case of having random priority structure,
The paper covers the discrete case, ie., the case when the states of nature are discrete
random variables, The case of having conti_l_luous random variables has not touched up yet.

The author intends to complete the work in this field and to try it in some real applications.
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