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Abstract

A periodic review inventory model for deteriorating items in which time is treated as a
discrete variable is developed. The model is developed under deterministic but time depen-
dent demands and instantaneous delivery. Deterioration is assumed to be a constant fraction
of the on hand inventory and partial returns are allowed for the deteriorated items. The
solution procedures for obtainting the optimal order quantities which maximize the total
profit in the scheduling period are presented for the cases of back orders and lost sales.

Finally, when the additioal orders are allowed, an efficient solution algorithm determin-
ing the initial and additional order quantities and additional ordering time is developed.
Some numerical examples are also presented to illustrate the results.

1. Introduction

Efforts in analysing mathematical models of inventory in which a constant or variable
proportion of the on hand inventory deteriorates per time unit have been made. Ghare and
Schreder [ 1] have developed an EOQ model for exponentially decaying inventory. Covert
and Philip [2] and Philip[3] have devloped EOQ model for items with variable rate of
deterioration by assuming Weibull density function for the time of deteriortion of an item.
This work has been generalized by Shah [4] by allowing shortages and considering general
deterioration function. Misra [ 5] has developed a deterministic model with a finite produc-
tion rate which has been generalized by Shah and Jaiswal [6] to allow shortages. Some
probabilistic models have been developed by Shah and Jaiswal [7].

In all the above models, time is treated as a continuous variable which is not exactly
the case in practice. In real life problems time is often treated as a discrete variable, i.c. in
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terms of complete units of days, weeks, months, etc. Dave [8] has developed a discrete-in-
time order-level inventory model for deteriorationg items and Rengarajan and Vartak [ 9]
have generalized Dave’s model by considering a variable known demand.

In all the previous models, the remaining value for deteriorated items is not considered.
Sorai. Arizono and Ohta [ 10] have generalized the single period inventory model known
as the newsboy probem. Even though it was not deteriorating inventory model, they have
considered the partial returns and additional orders.

In this paper a periodic review inventory model for deteriorating items in which time is
treated as a discrete variable is devloped. The model is devioped under deterministic but
time dependent demands and instantaneous delivery. Deterioration is assumed to be a con-
stant fraction of the on hand inventory and the partial returns are allowed for the deterio-
rated items. The solution procedure for the obtaining the optimal order quantities which
maximize the average total profit per unit time are presented for the cases of back orders
and lost sales.

Finally, when the additinal orders are allowed, the efficient solution algorithm deter-
mining the initial and additional order quantities and additional ordering time is derived.

2. Mathematical Model

The following assumputions are made to develop the model :
1. A finite scheduling period is devided into some sub-intervals of unit duration each.
2. The demand rates in each sub-intervals is known.
3. There is no replenishment lead time.
4. A constant fraction of on hand inventory at the begining of each time units deterio-
rates per unit time.
The deteriorated items are returned or removed at the end of each sub-intervals.
The limit of partial returns are proportional to the order quantitits.
The following notations are used throughout this paper :
T :Scheduling period (T, a positive integer )
g : deteriorating rate (0 Sg < 1)
D; :demand in j* sub-interval (j=1, 2, -, T)
C
C

o o

: cost per unit item

: selling price per cuit (C, > C)
C, :inventory holding cost per unit per unit time
: shortage cost per unit per unit time
: returning value per unit (C, < C)

C,
C
a :limit of returning proportion (0 Sasi )
S, :inventory level at time pointi (i=1, 2, -+, T)
2.1 Back orders case
As shown in Fig. 1, the system starts with the inventory level of So and this amount is
reduced by the demand and deterioration. The inventory level comes to zero at time t =t
and the demands occuring after the time t, are backlogged and are fulfilled by a new

procurement. Since the order quantity Q (t,) should raise the initial inventory level to So,

Q(t)=S,+3 D (1)
= —12-



At time t;, the inventory level is zero,

i.e.

St, =0,
But

S, =(1— 8 ) St;—y— Dy,
ie.

Sy—1 =Dy (1—6)7",
Similarly we can write

Stl—2=Dtl(1— 0 )_2+D:,—1(1_ 6)!
Sy_s =Dy (1= 8)+ Dyt (1= 8 )2+ Dy (1= 6 )

S(;=Dt1(l— g)yu+D 1 (1— 8 )y P+ +D(1—8)"

Inventory level

~
~
~
~

N ||
° oL J

¥ -

Fig.1. Back orders case
The total number of units that deteriorate during scheduling period L(t;) is & (S, + ¢
+”.+7 Stl_l)
L i
L(t)=6 S (D; (1~ 8)7) (

The sum of average inentory levels in each sub-intervals is



1
(u)=7% (So+2S, +2S,+ -+ 28, 1)
1 3} . ty (al »
=7]§1Dj(1—0)"’+]§2(Di]§1(1—0)_’) (3)
and the sum of average shortages in each sub-intervals is

1 T

21 tj+1 =+l

From (1), the order quantity Q(t,) is given by

QAt) =2 D(l—ﬁ)"+§ij_ (5)
Then using (2), (3), (4) and (5) the total average profit per unit time during
scheduing period TAP (t;) is given by

X1, % D= G, (1) = C, S(1) = (C—Ca) QW)

Lit)>aQt) (6)
TAP (t;) = {

1, % D= €, 1) — Cs S(1) = €Q(1)+C, Lin)l,

Lit)<aQ(t) (7)

. . . . I
where aQ(t; ) represents the limit of returns for deteriorated items and ¢, 2 Dj is total
sales during scheduling period. Y
Since t; is an integer, the optimal value of t; should satisfy the following conditions :

TAP(t*+1)— TAP(t}) <0 (8)
TAP (tF— 1) — TAP (/)< 0 (9)

where t;"is the optimal value of t;,
Using (6) in"the conditions (8) and (9), we get

D, 4 |
= =G, S (1= 0 ) (1= 8y (——Cz'l—c+cra)

C
5~ Cti +C(T— 1)+ (C—Ca)l S0 (10)

and

iC},= (1— 8 )y +(1— 0)"1(~—C2—!'*+C—Cra)

—CT—(C—Ca)l 20, (11)




Similary using (7) in the conditions (8) and (9), we get

P_%j—i H —Co4C.8) él(l_ 6 )+ (1— g ) (-—%—C-I—Cr(?)
+ o —Cg (T —1)+Cl S0 (12)
and
-DT—'L HC—C0) S (1= 8) +(1— 8" (%Jrc—c,a)
~ S tcy—cr-ci <o (13)

Since all D 20, the conditions (10), (11), (12) and ( 13) are independent of D; and
hold good for any D;.

The optimality conditions (10) and (11) are simplified to

M (4= 1) SMSM;(1) (14)
where

M,= IC,+2 (C—Cra)l /2

and

M(t)=Co (1—8)"—1} /8 +(1— ¢ )"“*”(%-I—C—Cra)
—Ce(T—1t,— 1)

Similary the optimality conditions (12) and (13) are simplified to

My (t, — 1) SM,SEM, (1) (15)
where

M, =(C,+2C)/2
and

My(t;)=(Cp+C,8) [(1—8)u—11/18

C
il gy (FHC—Co)—C(T—t— 1),



2.2 Lost Sales Case
In this case, the system starts with the inventory level of S, and the demands occuring

after the time t; becomes lost sales. Since the order quantity Q(t;) is equal to the initial
inventory level,

'
Q(t)=Se=2 D(1—0)
The sum of shortages during scheduling period is

’

S(t1)=i§”+] D;
L(t;) and I(t,) are represented the same form as (2) and (3) respectively.

Then the total average profit per unit time during scheduing period TAP (t,) is given
by

1 4
'FIT'CV JZ‘!]Dj_ChI(tl)_CsS(tl)_(C—Cra)Q(tl)}y
TAP(t,) = L(t;)>aQ(t;) (16)
1 4
T {C, E:le_ChI(tl)_Css(tl)_ CQ(t)+CL(t)l,

L(t)SaQ(t) (17)
Using (16) in the conditions (8) and (9), we can obtain the simplified optimality
conditions as follows :

M (t—1)SM SM () (18)
where
M, =C,+C
and
- Cw — 41
M, (t,)=Cy 1 (1—8)"—1} /8 +(—2—+C—Cra)(l— g )yt

Similary using (17) in the conditions (8) and (9), we get

My (ti —1) S M S Mp(ty) - (19)
where A
M2=CV+CS
and
C,

Mp(t)=(C,—C8) J(1—8)"—1] /8 +(- +C—C. ) (1— g )ywuty



2.3 Additional Orders Case

In this case as shown in Fig. 2, the inventory level comes to zero at time t; and the
additional order are allowed at the same time. At time t,, the inventory level comes to zero
again.

Let C, and C, be the cost per unit item and the cost per unit for additional order
respectively. If C, — C, > C,, then we do not additional order at time t;, because the loss
per unit item is greater than the shortage cost per unit. Hence, there is the relationship
among the cost terms.

C.2C,2CEC, +C,

At the time t,, the inventory level is zero,

ie.

S,2=0,
But

szz(l_ 0)St3—1+D13
i.e.

Slz—lthz (1_ 0)~l.

Similary we can write
Stg_z = th( 1—8)" + th—l (1— 8 )!
S,—3=D,(1— 8)*+ Dy (1= 6 )7+ Dy,—(1—8)"

Syt1 =Dy (1= ) Dy g (1= 8) "2 o 4 Dy (1= 6)7

Stl = Dtl (1— 4 Yt + th_l (1— 46 )—uz'trl) + e + Dtl+l (1— 6 )
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Fig.2. Additional Orders Case



The number of units that deteriorate until time t,, L (t;), is given by (2) and the
number of units that deteriorate between time t; and t;, L (t;), is given by

L(t)= 0(St1+stl+1 """ + Si,—1)
=03 (0, 2(1-0))

The initial order quantity is

Q(t)=Se=2 Dj(1— )"
and the additional order quantity is

Q(t;)=8,=3% D(1— 08y

The sum of average inventory levels in each sub-intervals until time t, is given by (3)

and the sum of average inventrory levels in each sub-intervals between time t, and t;, I(t;
), becones

1
I(t2)=?(S,I+ 28, 41+ e +25,-1)

1 ta to i—t—1
=33 pa=-oyotE (0 E1-00),

Since the demands occuring after the time t; becomes lost sales, the total number of
shortages during scheduling period is

St) =3 D

=g+l

In this case, we can obtain th following four types of total average profit per unit time
TAP (t,. t,) according to the limits of returns for deteriorated items.

DL(t;)>2Q(t) and L(t;) >aQ(t;)

1
TAP (t;, to) = [C. 2 Dj = Cy HI(t) +1(t:)] — C.S(t2)
—CiQ(t)— CQ(t)+ Ca 1Q(t))+Q(t2)1 ]
2) L(t,) >aQ(t,) and L(1;)SaQ (1)

t

1 2
TAP (ty, t2)=T [CVEID,»—(I,, {T0t)) + Lt )t — CS (ts)

‘ClQ(tl)—CzQ(tz)‘*’Cra faQ (t)+ L (o)} ]
18-



3) L(4,)SaQ(t;) and L(t;) >aQ(t;)

1 2
TAP (1), t2) = [C, 2 D;— Cy {I(t) +1(t2)} — C.S(tp)

—CiQ(t) — CoQ(t2) + CHL(t1) +aQ(t2)} ]

4) L(t,)2aQ(t,) and L(1,)2aQ (t,)

1 "
TAP (t,, t2)=T[Cvi§1Dj—Ch {I(t)+1(t2)} — C.S(t3)

—CiQ(t;)—CQ(t)+C, IL(t))+ L(tz)} ]

3. Solution Procedure

3.1. Back Orders and Lost Sales Cases

For the Back orders case, using optimality conditions (14) and (15), we can derive
the algorithm 1 to find a optimal order quantity and this procedure is described in detail in
Fig. 3.

Algorithm 1. Solution Procedure for Back Orders Case
Step 1. Compute M, and M, (t), t=1,2, -, and find t; that satisfies the condition
(14).
Step 2. Compute L (t;) from (2) and Q(t,) from (5).
Step 3. If L(t;) >aQ(t,), then stop.
Otherwise, go to step 4.
Step 4. Compute M, and M, (t), t=1, 2, -, and find t, that satisfies the condition
(15).
Step 5. Compute L (t;) from (2) and Q(t;) from (5).
For the lost sales case, using optimality conditions (18) and (19) and the identical
procedure with algorithm 1, we can obtain the optmal ordering policy.

3.2 Additional orders Case
In this case, it is very hard to determine the time t; and t, which maximize TAP (t;. t,
) because of the interaction of the cost terms according to the changes of t; and t,.
Here, we propose the algorithm 2 to obtain the good ordering policies for this case.

Algorithm 2. Solution Procedure for Additional Orders Case
Step 1. Find t; and t; independently by the same manner as the lost sales case and
compute TAP (t;, t2).
Step 2. Store the value of t; and t, into t) and 2 repectively.
Step 3. Move t, forward by unit time (t; < t, — 1) and Compute TAI"* )
Step 4. If TAP(t;, t;) increments, then go to step 3
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Fig.3. Solution Procedure for Back orders case




Otherwise, if step 2 is executed once only, then t, +t; + 1, compute TAP
4, t;) and go to step 5, otherwise, t, «t, + 1 compute TAP (t,, t;) and ¢
to step 7.
Step 5. Move t; backward by unit time (t; «t; +1) and compute TAP (t,, t;).
Step 6. If TAP(t;, t;) increments, then go to step 5.
Otherwise, go to step 7.
Step 7. If t, = tJ, then stop.
Otherwise, go to step 8.
Step 8. Move t, forward by unit time (t; < t, —1) and comput TAP (t,, t, ).
Step 9. If TAP (t;, t,) increments, then go to step 8.
Otherwise, if step 8 is executed once only, then t, «—t, + 1, compute TAP
t;, t2) and go to step 10,
otherwise, t, <t + 1, compute TAP (t;, t,) and go to step 12.
Step 10. Move t, backward by unit time (t, ~t, + 1) and compute TAP (t;, t5)
Step 11. If TAP(t,, t,) increments, then go to step 10
Otherwise, go to step 12.
Step 12. If t, =13, then stop.
Otherwise, go to step 2.

4. Numerical Examples

To illstrate the computational scheme developed, some numerical examples are con
dered for the back orders and aditional orders cases.

Example 1. Back Orders Cases
The input data used for this example is given below :
D; = 200 units/day (1=1, 2, -, T), C = $80/unit,
Cpn = $1/unit/day, C, = $9/unit/day, C, = $90/unit
C, = $60/unit, T= 12 days, & = 0.05 and a =0.2.
The value of M; = 72.5 and the values of M, (t) for t=1, 2, 3, ---, 7, --- are
— 13.05, 1.06, 15.43, 30.08, 45.03, 60.30, 75.89, -+ .
Here 72.5 lies between M, (6) and M(7) so that t; =7.
Using (2) and (5),
L (7)= 328 units and aQ (7) = 546.
Since this result does not satisfy (6), then we must continue to execute the next step. T
value of M, = 84.5 and the values of M, (t) for t=1, 2, 3, -, 9, are
— 6.32, 5.07,16.50, 28.05, 39.73, 51.56, 63.54, 75.67, 87.97, ---.
Here 84.5 lies between M, (8) and M, (9) so that t*=9
Therefore,
L (9) =547 units, A (9)=2947 units and TAP (9) = 851.06

Example 2. Additioal Orders Case

The input data used for this example is given below :
C, = $80/unit, C, = $90/unit, C, = $3/unit/day,
C, = $5/unnit/day, C, = $100/unit, C, = $70/unit,

g =0.04 and a = 0.2.



The demand pattern in scheduling period is shown in Table 1.

Table. 1 Demand Pattern

Time Unit; 1 2 3 4 5 6 7 8 9 10 11 12

Demand | 200 | 300 | 250 | 200 | 250 | 300 | 250 | 200 | 200 | 250 | 300 | 250

Table. 2 Changes of t;, t, and TAP (t;, t;)

ty t TAP (t;, t5)
6 12 562.616
5 12 247.483
7 12 720.759
8 12 776.224
9 12 671.924
8 12 776.224
8 11 777.985
8 10 670.016
8 11 7717.985
7 11 818.081
6 1 759.480
7 11 818.081
7 10 820.198
7 9 730.223
7 10 820.198
6 10 876.268
5 10 784.275
6 10 867.268
6 9 878.030
6 8 806.052
6 9 878.030
5 9 881.597
4 9 646.641
5 9 881.597
5 8 883.009
5 7 811.029
5 8 883.009
4 8 724.499
6 8 806.052
5 8 883.009

|
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Table 2 reperscnts the changes of t, t, and TAP (t;, t,) according to the algorithm 2 " .
can obtain the following results :

t; =5, t, =8 L(t;)=159, L(t,) =160, Q(t;)=1359,

Q(t,) =810 and TAP(t,, t,) = 883.01

5. Conclusion and Extensions

Many of the inventory system dealing with food items, food grains, chemicals, per-
troleum product, etc. can be tackled by our model, in which the production or replenish-
ment is measured per hour, per day, per week, etc.

In this paper we derived the solution procedures for obtaining optimal order quantities
for cases of back orders and lost sales when the parital returns for deteriorated items are
allowed. We also showed that the optimlity conditions for initial stock do not depend on the
nature of demand, Futhermore for the case of additional orders, we proposed the efficient
solution procedure to determine the additional ordering time and quantity.

One important but rather difficult extension might be consider the situation in which
the order quantity Q is restricted to dicrete units. Another would be to consider te case of
the probabilistic demand.
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