Kyungpook Math. J. Volume 28, Number 2 December, 1988.

A Study on Periodic Semigroups

By Younki Chae

Let S denote a topological semigroup throughout: that is, S is a Hausdorff space with a continuous associative multiplication, denoted by juxtaposition.

S is said to be pointwise periodic if and only if for each $x \in S$, $x^p = x$ for some integer $p \ge 2$. The least such p will be called the period of x.

S is turned periodic if and only if there is an integer $n \ge 2$ such that $x^n = x$ for all $x \in S$. The least such n will be called the period of S.

S is said to be recurrent if and only if x is a limit point of $\{x^n | n \ge 2\}$ for all $x \in S$.

Clearly S is pointwise periodic if and only if S is the union of finite groups. When S is compact, recurrency is equivalent to S being the union of groups (Cliffordian) [5, 6].

The criteria for S being pointwise periodic and recurrent could be found in [5, 6] as follows:

(1) S is pointwise periodic if and only if for every subset A of S,

 $A^2 \subset A$ implies $A^2 = A$.

(2) A compact S is recurrent if and only if for each compact subset K of S,

$$K \subset K$$
 implies $K = K$.

Many questions on pointwise periodic semigroups and recurrent semigroups were raised by A.D. Wallace in [10]. Here are striking results by J. M. Day [3,4]:

(A) If S is locally compact totally disconnected pointwise periodic, and $x^n = x$, then x has an arbitrary small compact open neighborhood V such that $V^n = V$.

(B) If S is compact connected recurrent and x is a cut point of S, then $x^n = x$ for some $n \ge 2$.

(C) If S is locally compact totally disconnected recurrent, and $x^n = x$, then x has an arbitrary small compact open neighborhood W such that $W^n = W$.

As indicated in [1] and [2], A pointwise periodic semigroup seems closely

This work is done under the support of Korea Science and Engineering Foundation.

related to a semilattice. The aim of this paper is to find conditions that a pointwise periodic semigroup to be a semilattice. Also, various properties of pointwise periodic semigroups were inrestigated.

An element e of S is called an idempotent if and only if $e^2 = e$. The set of all idempotents of S is denoted by E(S). The set of idempotents of a semigroup may be empty, as in the case for the additive semigroup of positive integers. However, E(S) is non-empty if S is compact. Moreover, in any topological semigroup S, E(S) is closed. For e, $f \in E(S)$, define $e \leq f$ if and only if ef = e = fe. Then \leq is a partial order on E and is a closed subspace of $S \times S$.

THEOREM 1. Let S be pointwise periodic and let p be the period of $x \in S$. Then (1) $E(S) = [x^{p-1} | x \in S]$

- (2) If $x^{\alpha} = x$, then $\alpha = m(p-1)+1$ for some positive integer m.
- (3) If p-1 is a prime number, then the period of $x^{\alpha}(\alpha < p-1)$ is the same as the period p of x.
- (4) Let p and q be the periods of the elements x and y of S respectively and let l be the least common multiple of p-1 and q-1. If S is commutative, then $(xy)^{l+1} = xy$.

PROOF. (1) If
$$p=2$$
, then $x^2 = x = x^{p-1} \in E(S)$. If $p>2$, then
 $(x^{p-1})^2 = x^{2p-2} = x^p x^{p-2} = x x^{p-2} = x^{p-1}$,

and hence $x^{p-1} \in E(S)$.

Now let $y \in E(S)$, *i.e.*, $y^2 = y$. Then $y \in \{z, z^2, ..., z^{r-1}\}$ for some $z \in S$ with period *r*. Let $y = z^{\alpha}$, $1 \le \alpha \le r-1$. Since $y^2 = y$, $z^{\alpha} = z^{2\alpha}$. Then $z = z^r = z^{r-\alpha} z^{\alpha} = z^{r-\alpha} z^{2\alpha} = z^{r+\alpha} = z^{\alpha+1}$.

But $\alpha + 1 \leq r$, and therefore $\alpha + 1 = r$, i.e., $\alpha = r - 1$.

(2) Since $x^{\alpha} = x$, $p \le \alpha$. Let $\alpha = m(p-1) + r$, where *m* is a positive integer and $0 \le r < p-1$. By (1), one obtain

$$x = x^{\alpha} = x^{m(p-1)} x^{r} = x^{p-1} x^{r} = x^{p-1+r}.$$

Then p-1+r < 2p-1 gives r=1. Hence $\alpha = m(p-1)+1$.

(3) The period of x^{α} is less than or equal to p since $(x^{\alpha})^{p} = (x^{p})^{\alpha} = x$. Suppose $(x^{\alpha})^{n} = x^{\alpha}$ for some integer n (1 < n < p). Then

$$x = x^{\alpha} x^{p-\alpha} = x^{n\alpha} x^{p-\alpha} = x^{(n-1)\alpha+1}.$$

By(2), $(n-1)\alpha = m(p-1)$ for some positive integer m. Since p-1 is a prime

number, p-1|n-1 or $p-1|\alpha$ which are both impossible. Therefore p is the period of x^{α} .

(4) Let
$$l = (p-1)m = (q-1)n$$
. Then
 $(xy)^{l+1} = x^{(p-1)m} y^{(q-1)n} xy = x^{p-1} y^{q-1} xy = xy$

REMARK. In (3), x^{α} may not have period p for all $(1 \le \alpha < p-1)$ if p-1 is not a prime. For example, let p=5. Then $(x^2)^3 = xx^5 = xx = x^2$, i.e., x^2 has period 3. In(4), l+1 may not be the period of xy. For example, let $Z_6 = \{0, 1, \dots, 5\}$ be the semigroup under the multiplication modulo 6. Then Z_6 is a discrete pointwise periodic semigroup. In Z_6 , the periods of 0, 1, 2, 3, 4, 5 are 2, 2, 3, 2, 2, 3 respectively. The least common multiple of (period of 2)-1 and (period of 5)-1 is 2, i.e., l+1=3. However, $2.5\equiv 4 \pmod{6}$ and the period of 4 is 2.

THEOREM 2. Let S be commutative and pointwise periodic. Define a relation \leq on S by $x \leq y$ if and only if $x^2 = xy$. Then

- (1) \leq is a closed partial order on S.
- (2) $L(x) \equiv [y | y \leq x] = E(S)x$.
- (3) If $e \in E(S)$ and $x \in S$, then $x \in \leq x$.
- (4) If $a \leq b$ and $x \leq y$, then $ax \leq by$.

PROOF. (1) Let $x \le y$ and let p be the period of x. Then $x^2 = xy$. If p > 2, $x = x^{p-2}x^2 = x^{p-2}xy = x^{p-1}y$. If p=2, $x^{p-1}y = xy = x^2 = x$. Conversely, $x = x^{p-1}y$ implies $x^2 = xx^{p-1}y = xy$, i.e., $x \le y$. Therefore $x \le y$ if and only if $x = x^{p-1}y$.

1) Since $x^2 = xx$, $x \le x$, i.e., \le is reflexive.

2) Let $x \le y$ and $y \le x$ and let p and q be periods of x and y respectively. Then $x = x^{p-1}y$ and $y = y^{q-1}x$, and hence

$$y = y^{q-1}x = y^{q-1}x^{p-1}y = x^{p-1}y = x^{p-1}y$$

That is, \leq is anti-symmetric.

B) Let
$$x \le y$$
 and $y \le z$. Then $x^2 = xy$, $y^2 = yz$, and $x = x^{p-1}y$. Hence $xz = x^{p-1}yz = x^{p-1}y^2 = (x^{p-1}y)y = xy = x^2$,

i.e., $x \leq z$. Therefore \leq is transitive, and hence \leq is a partial order on S.

Now let $f, g: S \times S \rightarrow S$ by $f(x, y) = x^2$ and g(x, y) = xy. Then f and g are continuous, and

$$\leq = \{(x, y) | x^2 = xy\} = \{(x, y) | f(x, y) = g(x, y)\}$$

is closed since S is a Hausdorff space.

(2) Let
$$y \in E(S)x$$
. Then $y = ex$, $e^2 = e$. Hence
 $y^2 = (ex)^2 = x(ex) = xy$, i.e., $y \le x$.

Therefore $y \in L(x)$.

Now let $y \in L(x)$. Then $y \le x$, i.e., $y = y^{q-1}x$, where q is the period of y. By (1) in Theorem 1, $y = y^{q-1}x \in E(S)x$, and we are done.

(3) Since
$$(xe)^2 = (xe)x$$
, $xe \le x$, $\forall e \in E(S)$

(4) Let $a \le b$ and let $c \in S$. Then $a^2 = ab$, and $(ac)^2 = a^2c^2 = abc^2 = (ac)(bc)$,

i.e., $ac \leq bc$. Now let $x \leq y$. Then $ax \leq bx \leq by$.

REMARK. If S has a zero 0, then $0 \le x$ for all $x \in S$ since $0^2 = 0 = 0x$. If S has an identity 1, $e \le 1$ for every $e \in E(S)$ since $e^2 = e = e = 1$.

THEOREM 3. Let \leq be the partial order on the commutative pointwise periodic S defined in Theorem 2. Let m be a positive integer. If $xy \leq x^m$, y^m , ${}^{\mathbb{F}}x$, $y \in S$, then S is a semilattice.

PROOF. By hypothesis, $(xy)^2 = (xy)y^m$, $\forall x, y \in S$. The substitution of x^{p-1} , where p is the period of x, for y gives

$$x^{2} = (xx^{p-1})^{2} = x(x^{p-1})^{m+1} = xx^{p-1} = x.$$

Hence S is a semilattice.

THEOREM 4. Let S be commutative and pointwise periodic. Then S admits a partial order \leq such that $xy \leq x$, y, $\forall x$, $y \in S$ if and only if S is a semilattice.

PROOF. Let $x \in S$. By substituting x, x^2, \dots , for y in $xy \le y$, one obtain $x \ge x^2 \ge x^3 \ge \dots$

Let *p* be the period of *x*. Then $x \ge x^2 \ge x^p = x$, i.e., $x^2 = x$. Hence S = E(S). The converse is well known.

COROLLARY. Let S be a commutative pointwise periodic semigroup which is not a semilattice. Then there is no partial order on S such that $xy \le x$, y, ${}^{V}x$, $y \in S$. Let E be a quasi-ordered set. Then $X \subset E$ is said to be convex if and only if $a \le b \le c$, a, $c \in X$ implies $b \in X$.

Let E be a topological space equipped with a quasi-order. The topology of E

216

is said to be locally convex if and only if the set of convex neighborhood of every point of E is a base for the neighborhood system of this point.

LEMMA. Nachbin [7] Every compact partially ordered space is locally convex.

THEOREM 5. Let S be locally compact and recurrent. If S admits a partial order \leq such that

$$xy \leq x, y, \forall x, y \in S.$$

Then for each open set U containing $x \in S$, $x^2 \in U$.

PROOF. By hypothesis, we have

$$x \ge x^2 \ge x^3 \ge \cdots$$
.

Let V be an open subset of S with compact closure such that $x \in V \subset \overline{V} \subset U$. Since S is recurrent, $x^p \in V$ for some integer $p \ge 2$. Since \overline{V} is a compact partially ordered space, by the above Lemma, \overline{V} is locally convex. Then

x,
$$x^{p} \in V$$
, $x \leq x^{2} \leq x^{p}$

implies $x^2 \in V \subset U$.

THEOREM 6. Let S be pointwise periodic. Then S is periodic if and only if there is an integer $m \ge 2$ such that

$$xy^m = x^m y$$
, $\forall x, y \in S$.

PROOF. Let p be the period of S. Then $p \ge 2$ and

$$xy^p = xy = x^p y$$
, ^Vx, $y \in S$.

Now let x be any element of S and let p be the period of x. Then, by hypothesis,

$$x = xx^{p-1} = x(x^{p-1})^m = x^m x^{p-1} = x^m.$$

Hence S is periodic with period $\leq m$.

COROLLARY. A commutative pointwise periodic semigroup S is a semilattice if and only if

$$xy^2 = x^2y$$
, $\forall x, y \in S$.

If x and Y are Hausdorff spaces and $\sigma: Y \to X$ is a continuous function, then $X \times S \times Y$ is a topological semigroup under the multiplication defined by

$$(x, s, y) (u, t, v) = (x, s\sigma(y, x)t, v).$$

This semigroup is called the Rees product of S over X and Y with sandwich

Younki Chae

function σ , and will be denoted by $[X, S, Y]_{\sigma}$. The Rees product of a topological group will be called a paragroup. In general, a paragroup fails to be a group. If σ is the constant function such that $\sigma(y, x)=1$, then

$$(x, s, y)^n = (x, s^n, y).$$

Hence we have the following two theorems immediately.

THEOREM 7. If S is a pointwise periodic semigroup with 1, then $[X, S, Y]_{\sigma}$ is pointwise periodic.

THEOREM 8. If S is a recurrent semigroup with 1, then $[X, S, Y]_{\sigma}$ is recurrent.

A semigroup S is said to be divisible if and only if for each $y \in S$ and $n \in N$, there exists $x \in S$ such that $x^n = y$.

It is clear that the surmorphic image of a divisible semigroup is divisible, and that the cartesian product of divisible semigroups is divisible. If S is a commutative finite divisible semigroup, then S is a semilattice.

THEOREM 9. Let S be commutative and periodic. If S is divisible, then S is a semilattice.

PROOF. Let p be the period of S. Define a function $f: S \to S$ by $f(x) = x^{p-1}$. Then $f(S) \subset E(S)$. Since S is divisible, f is surjective. Hence S = E(S).

A Bohr compactification of a topological semigroup S is a pair (β, B) such that B is a compact semigroup, $\beta: S \rightarrow B$ is a continuous homomorphism, and if $g: S \rightarrow T$ is a continuous homomorphism of S into a compact semigroup T, then there exists a unique continuous homomorphism $h: B \rightarrow T$ such that the diagram:

commutes.

For any topological semigroup S, there exist a unique Bohr compactification

218

 (β, B) of S up to isomorphism. Moreover, $\beta(S)$ is a dense subset of B.

THEOREM 10. If S is periodic with period p, then the Bohr compactification of S is also periodic with period $\leq p$.

PROOF. Let(β , B) be a Bohr compactification of S. Then $\beta(S)$ is a dense subsemigroup of B which is periodic with period $\leq p$. Let $b \in B$. Then there is a net $\{a_{\alpha}\}$ in $\beta(S)$ such that $a_{\alpha} \rightarrow b$. By the continuity of the multiplication in B, $a_{\alpha}^{p} \rightarrow b^{2}$. Then one obtain $b^{p} = b$.

As indicated in (A), if S is locally compact pointwise periodic and totally disconnected, each $x \in S$ has arbitrary small open neighborhood U such that $U^{p} = U$, where $x^{p} = x$.

THEOREM 11. Let S be locally compact and totally disconnected and let S' be a subsemigroup of S. If S is pointwise periodic and if $x \in S'$, then x has arbitrary small open neighborhood A in S' such that $A^p = A$, where $x^p = x$.

PROOF. Let $x \equiv S'$, $x^p = x$. If W is an open neighborhood of x in S', then there is an open neighborhood U of x in S such that $W = U \cap S'$. By the property (A) on S, there is an open set V in S containing x such that $V^p = V$. Now let $A = S' \cap V$. Then A is an open set in S containing x and

$$A = S' \cap V \subset S' \cap U = W,$$

$$A^{p} = (S' \cap V)^{p} \subset S'^{p} \cap V^{p} \subset S' \cap V \subset A.$$

Since S' is also pointwise periodic, $A^p = A$.

REFERENCES

- Chae, Y., Pointwise periodic semigroups and full ideals, Kyungpook Math. J., 15(1975), 231-235.
- [2] _____, Almost pointwise periodic semigroups I, Kyungpook Math. J. 21 (1981), 163 -165.
- [3] Day, J.M., Semigroups with periodic properties, Semigroup Forum 7 (1974), 292-309.
- [4] , Recurrent functions and semigroups, Semigroup Forum 10(1975), 190-202.
- [5] Wallace, A.D., Inverses in Euclidean mobs, Math. J. Okayama U. 3(1953), 23-28.
- [6] _____, Problems on periodicity functions and semigroups, Mat.-Fyz. Casopis 16(1966), 209-212.
- [7] Nachbin, L., Topology and Order, D. Van Nostrand Co., Inc., Princeton, N.J. (1965).