PAIRS OF CONNECTIONS COMPATIBLE WITH ALMOST QUASI-QUATERNION STRUCTURES

By Andrzej BUCKI

A.P. Norden [5] has introduced the notion of the mixed covariant differentiation by means of which a number of authors e.g.G. Atanasiu [1], A. Bonome and R. Castro-Bolano [2], A. Bucki and A. Miernowski [3], have defined pairs of connections compatible with certain structures on manifolds.

In this paper we define a pair of linear connections compatible with an almost quasi-quaternion structure on a manifold M. It turns out that every linear connection Γ on a manifold M determines a pair of linear connections compatible with an almost quasi-quaternion structure on M.

DEFINITION 1. [4]. Let M be a differentiable manifold of dimension n=4m and assume that there is a 3-dimensional vector bundle Q consisting of tensor fields of type(1,1) over M satisfying the following condition: In any coordinate neighbourhood U of M there is a local basis $\{F, G, H\}$ of Q such that:

(1)
$$F^2 = G^2 = -H^2 = -Id$$
, $FG = GF = -H$

(2)
$$GH = HG = F$$
, $FH = HF = G$

where Id denotes the identity tensor field of type (1,1) on M. Such a local basis is called a canonical basis of a bundle Q in U. Then, the bundle Q is called an almost quasi-quaternion structure on M and (M, Q) is an almost quasi-quaternion manifold.

DEFINITION 2. [4]. Suppose that M is an almost quasi-quaternion manifold with a structure $Q = \{F, G, H\}$. A linear connection Γ on M given by its covariant derivative ∇ is said to preserve a structure Q or simply to be a Q-connection if it satisfies:

$$\begin{array}{c} \nabla F\!=\!m_{F}\!\otimes\!Id\!+\!n_{F}\!\otimes\!F\!+\!p_{F}\!\otimes\!G\!+\!q_{F}\!\otimes\!H \\ \nabla G\!=\!m_{G}\!\otimes\!Id\!+\!n_{G}\!\otimes\!F\!+\!p_{G}\!\otimes\!G\!+\!q_{G}\!\otimes\!H \\ \nabla H\!=\!m_{H}\!\otimes\!Id\!+\!n_{H}\!\otimes\!F\!+\!p_{H}\!\otimes\!G\!+\!q_{H}\!\otimes\!H \end{array}$$

where m_J , n_J , p_J , q_J are certain 1-forms on M and J is F, G or H.

PROPOSITION 1. [4]. A linear connection Γ on an almost quasi-quaternion

manifold M is a Q-connection if and only if:

$$\nabla F = \nabla G = \nabla H = 0$$

In [4] we have introduced the following tensor fields of type (2, 2):

(5)
$$A = \frac{1}{4} (3Id \otimes Id + F \otimes F + G \otimes G - H \otimes H)$$

(6)
$$B = \frac{1}{4} (Id \otimes Id - F \otimes F - G \otimes G + H \otimes H)$$

REMARKI. The operations of A (orB) on tensor fields: C of type (2,2), D of type (1, 2), F of type (1, 1) and X of type (1, 0) are expressed locally as follows: $A_{kl}^{ij}C_{in}^{ml}$, $A_{kl}^{ij}D_{mi}^{l}$, $A_{kl}^{ij}F_{l}^{l}$, $A_{kl}^{ij}X^{k}$ respectively.

The operators A and B have the following properties:

(7)
$$A+B=Id\otimes Id$$
, $A^2=A$, $B^2=B$, $AB=BA=0$

(8)
$$AF = AG = AH = 0$$
, $BId = Id$, $BF = F$, $BG = G$, $BH = H$

THEOREM 1. [4]. The general family of Q-connections on a manifold M with an almost quasi-quaternion structure $Q = \{F, G, H\}$ is given by:

(9)
$$\overline{\nabla}_{x} = \nabla_{x} - \frac{1}{4} (F \nabla_{x} F + G \nabla_{x} G - H \nabla_{x} H) + BW_{x}$$

where ∇ is a covariant derivative with respect to arbitrary initial linear connection Γ on M and W is any tensor field of type(1,2) with $W_xY=W(X,Y)$.

The curvature tensor field R_{XY} of a Q-connection has the following properties:

(10)
$$FR_{XY} = R_{XY}F, \quad GR_{XY} = R_{XY}G, \quad HR_{XY} = R_{XY}H$$

$$AR_{XY} = 0$$

$$BR_{XY} = R_{XY}$$

Suppose that on a manifold M, two linear connections $\overset{1}{\Gamma}$ and $\overset{2}{\Gamma}$ are given by means of their covariant derivatives $\overset{1}{\nabla}$ and $\overset{2}{\nabla}$ respectively. Following [5], we define the following mixed covariant derivatives for functions, vector fields and tensor fields of type (1, 1):

$$(13) \qquad \qquad \stackrel{12}{\nabla_r} f = XF = \stackrel{21}{\nabla_r} f$$

(14)
$$\overset{12}{\nabla_x} Y = \overset{1}{\nabla_x} Y, \quad \overset{21}{\nabla_x} Y = \overset{2}{\nabla_x} Y$$

(15)
$$(\overset{12}{\nabla}_{x}J)(Y, \omega) = X(J(Y, \omega)) - J(\overset{1}{\nabla}_{x}Y, \omega) - J(Y, \overset{2}{\nabla}_{x}\omega)$$

(16)
$$(\overset{21}{\nabla_x} J)(Y, \omega) = X(J(Y, \omega)) - J(\overset{2}{\nabla_x} Y, \omega) - J(Y, \overset{1}{\nabla_x} \omega)$$

where f is a function, ω is a 1-form, X, Y are vector fields and J is a tensor

field of type (1,1) on M.

For a pair of connections $\overset{1}{\Gamma}$ and $\overset{2}{\Gamma}$ we define a mean connection $\overset{m}{\Gamma}$ given by its covariant derivative $\overset{m}{\nabla}$ and a deformation tensor field τ of type (1,2) of these connections in the following form:

(17)
$$\overset{m}{\nabla}_{x} = \frac{1}{2} (\overset{1}{\nabla}_{x} + \overset{2}{\nabla}_{x})$$

$$\tau_x = \overset{2}{\nabla}_x - \overset{1}{\nabla}_x$$

We may regard a tensor field J of type (1,1) as a linear mapping of TM into TM defined as follows:

(19)
$$X \longrightarrow J(X, \omega) = \omega(J(X)), \omega \text{ is a 1-form on } M$$

In virtue of (19), (15) and (16) we have:

$$\omega((\overset{12}{\nabla}_{x}J)Y) = \omega((\overset{2}{\nabla}_{x}J + J\tau_{x})Y), \ \omega((\overset{21}{\nabla}_{x}J)Y) = \omega((\overset{1}{\nabla}_{x}J - J\tau_{x})Y)$$

for all 1-forms ω and vector fields X, Y. Hence we define:

$$(20) \qquad \qquad \stackrel{12}{\nabla_x} J = \stackrel{2}{\nabla_x} J + J \tau_x$$

$$(21) \qquad \stackrel{21}{\nabla}_{x} J = \stackrel{1}{\nabla}_{x} J - J \tau_{x}$$

We also have the following relations [3]:

(22)
$$\tau_r(J) = \tau_r J - I \tau_r$$

(23)
$$\nabla_{x}^{m} J = \frac{1}{2} (\nabla_{x}^{12} J + \nabla_{x}^{21} J)$$

(24)
$$\nabla_{x}(JK) = (\nabla_{x}^{21}J)K + J\nabla_{x}^{12}K$$

(25)
$$\overset{2}{\nabla}_{x}(JK) = (\overset{12}{\nabla}_{x}J)K + J\overset{21}{\nabla}_{x}K$$

for any tensor fields J, K of type (1, 1).

DEFINITION 3. A pair of linear connections $(\Gamma, \Gamma)^2$ on M is said to be compatible with an almost quasi-quaternion structure $Q = \{F, G, H\}$ on M if:

$$\begin{array}{ll} (26) & \nabla_{x}^{12}F\!=\!a_{F}(X)Id\!+\!b_{F}(X)F\!+\!c_{F}(X)G\!+\!d_{F}(X)H \\ \nabla_{x}^{12}G\!=\!a_{G}(X)Id\!+\!b_{G}(X)F\!+\!c_{G}(X)G\!+\!d_{G}(X)H \\ \nabla_{x}^{12}H\!=\!a_{H}(X)Id\!+\!b_{H}(X)F\!+\!c_{H}(X)G\!+\!d_{H}(X)H \end{array}$$

where a_I , b_I , c_I , d_I are certain 1-forms on M.

PROPOSITION 2. A pair of linear connections (Γ, Γ) on M is compatible with an almost quasi-quaternion structure $Q = \{F, G, H\}$ on M if and only if:

(27)
$$\nabla_{x}^{21}F = -\nabla_{x}^{12}F = b(X)Id - a(X)F - d(X)G + c(X)H$$

$$\nabla_{x}^{21}G = -\nabla_{x}^{12}G = c(X)Id - d(X)F - a(X)G + b(X)H$$

$$\nabla_{x}^{21}H = -\nabla_{x}^{12}H = -d(X)Id - c(X)F - b(X)G - a(X)H$$

where a, b, c, d are certain 1-forms on M.

PROOF. From (24), if we put J = K = F and make use of (1) we obtain: $(\overset{21}{\nabla}_x F)F + F(\overset{12}{\nabla}_x F) = 0$ or $\overset{21}{\nabla}_x F = F(\overset{12}{\nabla}_x F)F$, hence because of (26) we have $\overset{21}{\nabla}_x F = F(\overset{21}{\nabla}_x F)F$, hence because of (26) we have $\overset{21}{\nabla}_x F = F(\overset{21}{\nabla}_x F)F$. Similarly, we show that: $\overset{21}{\nabla}_x G = -\overset{12}{\nabla}_x G$ and $\overset{21}{\nabla}_x H = -\overset{12}{\nabla}_x H$. Now, from (24) we have: $\overset{1}{\nabla}_x F = \overset{1}{\nabla}_x (GH) = \overset{21}{(\nabla}_x G)H + G\overset{12}{\nabla}_x H = [-a_G(X)Id - b_G(X)F - c_G(X)G - d_G(X)H]H + G[a_H(X)Id + b_H(X)F + c_H(X)G + d_H(X)H] = [-d_G(X) - c_H(X)]Id + [d_H(X) - c_G(X)]F + [-b_G(X) + a_H(X)]G + [-a_G(X) - b_H(X)]H$.

$$d_{H}\!=\!c_{G}\!=\!b_{F}\!=\!a,\ c_{H}\!=\!-d_{G}\!=\!-a_{F}\!=\!b,\ b_{H}\!=\!-a_{G}\!=\!-d_{F}\!=\!c,\ a_{H}\!=\!b_{G}\!=\!c_{F}\!=\!d$$

REMARK 2. From this Proposition it follows that the notion of compatibility of a pair (Γ, Γ) with a structure $Q = \{F, G, H\}$ is symmetric with respect to these connections.

THEOREM 2. A pair of linear connections (Γ, Γ) on a manifold M is compatible with an almost quasi-quaternion structure $Q = \{F, G, H\}$ on M if and only if:

(28)
$$\overset{1}{\nabla}_{x} = \nabla_{x} - \frac{1}{4} (F \nabla_{x} F + G \nabla_{x} G - H \nabla_{x} H) + B P_{x}$$

(29)
$$\overset{2}{\nabla}_{x} = \nabla_{x} - \frac{1}{4} (F \nabla_{x} F + G \nabla_{x} G - H \nabla_{x} H) + B P_{x} + a(X) I d + b(X) F + c(X) G + d(X) H$$

where ∇ is a covariant differentiation operator with respect to arbitrary linear connection Γ on M, P is arbitrary tensor field of type (1,2) with $P_V(X) = P(Y, X)$

X), B is given by (6) and a, b, c and d are certain l-forms on M.

PROOF. In the proof of Proposition 2, we have shown that Γ^1 is a Q-connection on M and from (20) $\nabla_x J = -\nabla_x J$, so Γ^2 is also a Q-connection on M. Hence

(30)
$$\nabla_x F = \nabla_x G = \nabla_x H = 0, \quad \nabla_x F = \nabla_x G = \nabla_x H = 0$$

From (18), (22) and (30) we have:

(31)
$$\tau_x(F) = \tau_x(G) = \tau_x(H) = 0$$

From (21), because of $\overset{1}{\nabla}_x J = 0$ we have: $-J^2 \tau_x = J \overset{21}{\nabla}_x J$ where J is F, G or H. If J = F, then we have: $\tau_x = F \overset{21}{\nabla}_x F$ and from (27) we get:

(32)
$$\tau_x = a(X)Id + b(X)F + c(X)G + d(X)H$$

Applying Theorem 1 to Γ we obtain (28) and from (32) we get (29).

Conversely, if (28) and (29) are satisfied, then making use of (21) we obtain (27) which means that a pair (Γ, Γ) is compatible with a structure $Q = \{F, G, H\}$ on M.

REMARK 3. From (30) and (17) $\stackrel{m}{\Gamma}$ is a Q-connection and

$$(33) \qquad \nabla_x^m F = \nabla_x^m G = \nabla_x^m H = 0$$

COROLLARY 1. Any linear connection Γ on a manifold M with an almost quasi-quater nion on structure $Q = \{F, G, H\}$ determines a pair (Γ, Γ) of linear connections given by (28) and (29) which is compatible with Q.

Following [6] we have the following:

DEFINITION 4. [6]. For a pair of linear connections $\overset{1}{\Gamma}$ and $\overset{2}{\Gamma}$ on a manifold M the following operators:

(34)
$$\rho_{XY} = \frac{1}{2} ([\overset{1}{\nabla}_{x}, \overset{2}{\nabla}_{Y}] + [\overset{2}{\nabla}_{X}, \overset{1}{\nabla}_{Y}] - \overset{1}{\nabla}_{[X,Y]} - \overset{2}{\nabla}_{[X,Y]})$$

$$(35) K_{XY} = \frac{1}{4} [\tau_X, \tau_Y]$$

are called operators of mixed and deformation curvatures respectively.

PROPOSITION 3. [6]. The following relations are satisfied:

(36)
$$2\rho_{XY} + 4K_{XY} = R_{XY} + R_{XY}^2$$

$$\rho_{XY} + K_{XY} = \stackrel{m}{R}_{XY}$$

where $\stackrel{1}{R}_{XY}$, $\stackrel{2}{R}_{XY}$ and $\stackrel{m}{R}_{XY}$ are curvature operators of connections $\stackrel{1}{\Gamma}$, $\stackrel{2}{\Gamma}$ and $\stackrel{m}{\Gamma}$ respectively.

Now, we give some properties of operators of mixed and deformation curvatures for a pair of connections compatible with an almost quasi-quaternion structure on M in the following:

THEOREM 3. The operators of mixed and deformation curvatures of a pair of linear connections (Γ, Γ) which is compatible with an almost quasi-quaternion structure $Q = \{F, G, H\}$ on a manifold M satisfy the following conditions:

(38)
$$F \rho_{XY} = \rho_{XY} F$$
, $G \rho_{XY} = \rho_{XY} G$, $H \rho_{XY} = \rho_{XY} H$

(39)
$$FK_{XY} = K_{XY}F, GK_{XY} = K_{XY}G, HK_{XY} = K_{XY}H$$

(40)
$$A\rho_{XY} = AK_{XY} = 0, \quad B\rho_{XY} = \rho_{XY}, \quad BK_{XY} = K_{XY}$$

where A, B are given by (5) and (6).

PROOF. Making use of the fact that $\overset{1}{\Gamma}$, $\overset{2}{\Gamma}$ and $\overset{m}{\Gamma}$ are Q-connections, $\overset{1}{R}_{XY}$, $\overset{2}{R}_{XY}$ and $\overset{m}{R}_{XY}$ satisfy (10), (11) and (12), so from (36) and (37) we obtain (38), (39) and (40).

REFERENCES

- ATANASIU, G., Sur les couples de connexions compatibles aux structures presque de contact, Rev. Roumaine Math. Pures. Appl., 22(1977), 427—436.
- [2] BONOME, A., CASTRO-BOLANO, R., On the integrability of almost quaternion structures, An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. Ia, Math. (N.S.), 29(1983), 85 -95.
- [3] BUCKI, A., MIERNOWSKI, A., On a pair of connections which is compatible with an almost r-pracontact structure, Demonstratio Math., 17(1984), 683—696.
- [4] BUCKI, A., Almost quasi-quaternion manifolds, Hokkaido Math. J., to appear.
- [5] NORDEN, A.P., Spaces with affine connections, Izdat. "Nauka" Moscow, 1976, (in Russian).
- [6] VAISMAN, I., Sur quelques formules du calcul de Ricci global, Comment. Math Helv., 41(1966-7), 74-87.

Department of Mathematics, Lycoming College, Williamsport, PA17701, USA