Kyungpook Math. J.
Volume 28, Number 2
December 1988.

PAIRS OF CONNECTIONS COMPATIBLE WITH ALMOST QUASI-QUATERNION STRUCTURES

By Andrzej BUCKI

A.P. Norden [5] has introduced the notion of the mixed covariant differentiation by means of which a number of authors e.g. G. Atanasiu [1], A. Bonome and R. Castro-Bolano [2], A. Bucki and A. Miernowski [3], have defined pairs of connections compatible with certain structures on manifolds.

In this paper we define a pair of linear connections compatible with an almost quasi-quaternion structure on a manifold M. It turns out that every linear connection Γ on a manifold M determines a pair of linear connections compatible with an almost quasi-quaternion structure on M .

DEFINITION 1. [4]. Let M be a differentiable manifold of dimension $n=4 \mathrm{~m}$ and assume that there is a 3-dimensional vector bundle Q consisting of tensor fields of type (1,1) over M satisfying the following condition: In any coordinate neighbourhood U of M there is a local basis $\{F, G, H\}$ of Q such that:
(1) $F^{2}=G^{2}=-H^{2}=-I d, \quad F G=G F=-H$
(2) $G H=H G=F, F H=H F=G$
where Id denotes the identity tensor field of type $(1,1)$ on M. Such a local basis is called a canonical basis of a bundle Q in U. Then, the bundle Q is called an almost quasi-quaternion structure on M and (M, Q) is an almost quasiquaternion manifold.

DEFINITION 2. [4]. Suppose that M is an almost quasi-quaternion manifold with a structure $Q=\{F, G, H\}$. A linear connection Γ on M given by its covariant derivative ∇ is said to preserve a structure Q or simply to be a Q-connection if it satisfies:

$$
\begin{align*}
& \nabla F=m_{F} \otimes I d+n_{F} \otimes F+p_{F} \otimes G+q_{F} \otimes H \\
& \nabla G=m_{G} \otimes I d+n_{G} \otimes F+p_{G} \otimes G+q_{G} \otimes H \tag{3}\\
& \nabla H=m_{H} \otimes I d+n_{H} \otimes F+p_{H} \otimes G+q_{H} \otimes H
\end{align*}
$$

where $m_{J}, n_{J}, p_{J}, q_{J}$ are certain 1 -forms on M and J is F, G or H.
PROPOSITION 1. [4]. A linear connection Γ on an almost quasi-quaternion
manifold M is a Q-connection if and only if:
(4)

$$
\nabla F=\nabla G=\nabla H=0
$$

In [4] we have introduced the following tensor fields of type (2, 2) :

$$
\begin{align*}
& A=\frac{1}{4}(3 I d \otimes I d+F \otimes F+G \otimes G-H \otimes H) \tag{5}\\
& B=\frac{1}{4}(I d \otimes I d-F \otimes F-G \dot{\otimes} G+H \otimes H) \tag{6}
\end{align*}
$$

REMARK1. The operations of A (or B) on tensor fields: C of type (2,2), D of type $(1,2), F$ of type $(1,1)$ and X of type (1,0) are expressed locally as follows: $A_{k l}^{i j} C_{i n}^{m 1}, A_{k l}^{i j} D_{m i}^{1}, A_{k 1}^{i j} F_{l}^{1}, A_{k 1}^{i j} X^{k}$ respectively.

The operators A and B have the following properties:

$$
\begin{align*}
& A+B=I d \otimes I d, \quad A^{2}=A, \quad B^{2}=B, \quad A B=B A=0 \tag{7}\\
& A F=A G=A H=0, \quad B I d=I d, \quad B F=F, B G=G, \quad B H=H \tag{8}
\end{align*}
$$

THEOREM 1. [4]. The general family of Q-connections on a manifold M with an almost quasi-quaternion structure $Q=\{F, G, H\}$ is given by:

$$
\begin{equation*}
\bar{\nabla}_{x}=\nabla_{x}-\frac{1}{4}\left(F \nabla_{x} F+G \nabla_{x} G-H \nabla_{x} H\right)+B W_{x} \tag{9}
\end{equation*}
$$

where ∇ is a covariant derivative with respect to arbitrary initial linear connection Γ on M and W is any tensor field of type $(1,2)$ with $W_{x} Y=W(X, Y)$.

The curvature tensor field $R_{X Y}$ of a Q-connection has the following properties:

$$
\begin{align*}
& F R_{X Y}=R_{X Y} F, \quad G R_{X Y}=R_{X Y} G, \quad H R_{X Y}=R_{X Y} H \tag{10}\\
& A R_{X Y}=0 \tag{11}\\
& B R_{X Y}=R_{X Y} \tag{12}
\end{align*}
$$

Suppose that on a manifold M, two linear connections $\stackrel{1}{\Gamma}$ and $\stackrel{2}{\Gamma}$ are given by means of their covariant derivatives $\stackrel{1}{\nabla}$ and $\stackrel{2}{\nabla}$ respectively. Following [5], we define the following mixed covariant derivatives for functions, vector fields and tensor fields of type $(1,1)$:

$$
\begin{align*}
& \stackrel{12}{\nabla}_{x} f=X F=\stackrel{21}{\nabla}_{x} f \tag{13}\\
& \stackrel{12}{\nabla}_{x} Y=\stackrel{1}{\nabla}_{x} Y, \stackrel{21}{\nabla}_{x} Y=\stackrel{2}{\nabla}_{x} Y \tag{14}\\
& \left(\stackrel{12}{\nabla}_{x} J\right)(Y, \omega)=X(J(Y, \omega))-J\left(\nabla_{x} Y, \omega\right)-J\left(Y, \stackrel{2}{\nabla}_{x} \omega\right) \tag{15}\\
& \left.\stackrel{21}{\nabla_{x}} J\right)(Y, \omega)=X(J(Y, \omega))-J\left(\stackrel{\rightharpoonup}{\nabla}_{x} Y, \omega\right)-J\left(Y, \stackrel{1}{\nabla}_{x}(\omega)\right. \tag{16}
\end{align*}
$$

where f is a function, ω is a l-form, X, Y are vector fields and J is a tensor
field of type (1,1) on M.
For a pair of connections $\stackrel{1}{\Gamma}$ and $\stackrel{2}{\Gamma}$ we define a mean connection ${ }^{m}$ given by its covariant derivative ∇^{m} and a deformation tensor field τ of type (1,2) of these connections in the following form:

$$
\begin{align*}
& \stackrel{m}{\nabla}_{x}=\frac{1}{2}\left(\stackrel{1}{\nabla}_{x}+\stackrel{2}{\nabla}_{x}\right) \tag{17}\\
& \tau_{x}=\stackrel{2}{\nabla}_{x}-\stackrel{1}{\nabla}_{x} \tag{18}
\end{align*}
$$

We may regard a tensor field J of type $(1,1)$ as a linear mapping of TM into TM defined as follows:

$$
\begin{equation*}
X \longrightarrow J(X, \omega)=\omega(J(X)), \omega \text { is a 1-form on } M \tag{19}
\end{equation*}
$$

In virtue of (19), (15) and (16) we have:

$$
\left.\left.\left.\omega\left(\stackrel{12}{\nabla}_{x} J\right) Y\right)=\omega\left(\left(\stackrel{2}{\nabla}_{x} J+J \tau_{x}\right) Y\right), \omega\left(\stackrel{21}{\nabla}_{x} J\right) Y\right)=\omega\left(\nabla_{x}^{1} J-J \tau_{x}\right) Y\right)
$$

for all l-forms ω and vector fields X, Y. Hence we define:

$$
\begin{align*}
& 12_{\nabla_{x}} J=\stackrel{2}{\nabla}_{x} J+J \tau_{x} \tag{20}\\
& \stackrel{\rightharpoonup}{2}_{x} J=\nabla_{x}^{1} J-J \tau_{x} \tag{21}
\end{align*}
$$

We also have the following relations [3]:

$$
\begin{equation*}
\tau_{x}(J)=\tau_{x} J-I \tau_{x} \tag{22}
\end{equation*}
$$

$$
\begin{align*}
& \stackrel{m}{n}^{\nabla_{x}} J=\frac{1}{2}\left(\nabla_{x}^{12} J+\nabla_{x}^{21} J\right) \tag{23}\\
& \nabla_{x}^{1}(J K)=\left(\nabla_{x} J\right) K+J \nabla_{x}^{12} K \tag{24}
\end{align*}
$$

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\nabla}_{x}(J K)=\left(\nabla_{x}^{12} J\right) K+J \nabla_{x}^{21} K \tag{25}
\end{equation*}
$$

for any tensor fields J, K of type (1, 1).
DEFINITION 3. A pair of linear connections $(\stackrel{1}{\Gamma}, \stackrel{2}{\Gamma})$ on M is said to be compatible with an almost quasi-quaternion structure $Q=\{F, G, H\}$ on M if:

$$
\begin{align*}
& \nabla_{x}^{12} F=a_{F}(X) I d+b_{F}(X) F+c_{F}(X) G+d_{F}(X) H \tag{26}\\
& \nabla_{x} G=a_{G}(X) I d+b_{G}(X) F+c_{G}(X) G+d_{G}(X) H \\
& \nabla_{x}^{12} H=a_{H}(X) I d+b_{H}(X) F+c_{H}(X) G+d_{H}(X) H
\end{align*}
$$

where $a_{J}, b_{J}, c_{J}, d_{J}$ are certain l-forms on M.
PROPOSITION 2. A pair of linear connections $(\stackrel{1}{\Gamma}, \stackrel{2}{\Gamma})$ on M is compatible with an almost quasi-quaternion structure $Q=\{F, G, H\}$ on M if and only if:

$$
\begin{align*}
& \nabla_{x}^{21} F=-\nabla_{x}^{12} F=b(X) I d-a(X) F-d(X) G+c(X) H \\
& \stackrel{\rightharpoonup}{2}_{x} G=-\nabla_{x}^{12} G=c(X) I d-d(X) F-a(X) G+b(X) H \tag{27}\\
& \nabla_{x}^{21} H=-\nabla_{x} H=-d(X) I d-c(X) F-b(X) G-a(X) H
\end{align*}
$$

where a, b, c, d are certain l-forms on M.
PROOF. From (24), if we put $J=K=F$ and make use of (1) we obtain: $\left(\stackrel{21}{\nabla_{x}} F\right) F+F\left(\stackrel{12}{\nabla}_{x} F\right)=0$ or $\stackrel{21}{\nabla}_{x} F=F\left(\stackrel{12}{\nabla}_{x} F\right) F$, hence because of (26) we have $\stackrel{21}{\nabla}_{x} F=F$ $\left[a_{F}(X) I d+b_{F}(X) F+c_{F}(X) G+d_{F}(X) H\right] F=-\nabla_{X}^{12} F$. Similarly, we show that: $\stackrel{21}{\nabla_{x}} G=-\stackrel{12}{\nabla}_{x} G$ and $\stackrel{21}{\nabla}_{x} H=-\stackrel{12}{\nabla}_{x} H$. Now, from (24) we have: $\stackrel{1}{\nabla}_{x} F=\stackrel{1}{\nabla}_{x}(G H)=\left(\stackrel{21}{\nabla}{ }_{x} G\right) H$ $+G \nabla_{x}^{12} H=\left[-a_{G}(X) I d-b_{G}(X) F-c_{G}(X) G-d_{G}(X) H\right] H+G\left[a_{H}(X) I d+b_{H}(X) F+c_{H}\right.$ $\left.(X) G+d_{H}(X) H\right]=\left[-d_{G}(X)-c_{H}(X)\right] I d+\left[d_{H}(X)-c_{G}(X)\right] F+\left[-b_{G}(X)+a_{H}(X)\right] G$ $+\left[-a_{G}(X)-b_{H}(X)\right] H$.
Similarly, $\stackrel{1}{\nabla}_{x} G=\left[-d_{F}(X)-b_{H}(X)\right] I d+\left[c_{F}(X)+a_{H}(X)\right] F+\left[-b_{F}(X)+d_{H}(X)\right] G$ $+\left[-a_{F}(X)-c_{H}(X)\right] H$ and $\stackrel{1}{\nabla}_{x} H=\left[c_{F}(X)-b_{G}(X)\right] I d+\left[-d_{F}(X)+a_{G}(X)\right] F+\left[-a_{F}\right.$ $\left.(X)+d_{G}(X)\right] G+\left[b_{F}(X)-c_{G}(X)\right] H$. On account of Definition 2, a connection $\stackrel{1}{\Gamma}$ is a Q-connection so in virtue of Proposition 1 we have:

$$
d_{H}=c_{G}=b_{F}=a, \quad c_{H}=-d_{G}=-a_{F}=b, \quad b_{H}=-a_{G}=-d_{F}=c, \quad a_{H}=b_{G}=c_{F}=d
$$

REMARK 2. From this Proposition it follows that the notion of compatibility of a pair $(\stackrel{1}{\Gamma}, \stackrel{2}{\Gamma})$ with a structure $Q=\{F, G, H\}$ is symmetric with respect to these connections.

THEOREM 2. A pair of linear connections $(\stackrel{1}{\Gamma}, \stackrel{2}{\Gamma})$ on a manifold M is compatible with an almost quasi-quaternion structure $Q=\{F, G, H\}$ on M if and only if:

$$
\begin{align*}
& \stackrel{1}{\nabla}_{x}=\nabla_{x}-\frac{1}{4}\left(F \nabla_{x} F+G \nabla_{x} G-H \nabla_{x} H\right)+B P_{x} \tag{28}\\
& \stackrel{2}{\nabla}_{x}=\nabla_{x}-\frac{1}{4}\left(F \nabla_{x} F+G \nabla_{x} G-H \nabla_{x} H\right)+B P_{x}+a(X) I d \tag{29}\\
& \quad+b(X) F+c(X) G+d(X) H
\end{align*}
$$

where ∇ is a covariant differentiation operator with respect to arbitrary linear connection Γ on M, P is arbitrary tensor field of type $(1,2)$ with $P_{Y}(X)=P(Y$,
$X), B$ is given by (6) and a, b, c and d are certain l-forms on M.
PROOF. In the proof of Proposition 2, we have shown that $\stackrel{1}{\Gamma}$ is a Q-connection on M and from (20) $\stackrel{2}{\nabla}_{x} J=-\nabla_{x} J$, so $\stackrel{2}{\Gamma}$ is also a Q-connection on M. Hence

$$
\begin{equation*}
\stackrel{1}{\nabla}_{x} F=\stackrel{1}{\nabla}_{x} G=\stackrel{1}{\nabla}_{x} H=0, \quad \stackrel{2}{\nabla}_{x} F=\stackrel{2}{\nabla}_{x} G=\stackrel{2}{\nabla}_{x} \cdot H=0 \tag{30}
\end{equation*}
$$

From (18), (22) and (30) we have:

$$
\begin{equation*}
\tau_{x}(F)=\tau_{x}(G)=\tau_{x}(H)=0 \tag{31}
\end{equation*}
$$

From (21), because of $\stackrel{1}{\nabla}_{x} J=0$ we have: $-J^{2} z_{x}=J \bar{\nabla}_{x} J$ where J is F, G or H. If $J=F$, then we have: $\tau_{x}=F \nabla_{x}^{21} F$ and from (27) we get:

$$
\begin{equation*}
\tau_{x}=a(X) I d+b(X) F+c(X) G+d(X) H \tag{32}
\end{equation*}
$$

Applying Theorem 1 to $\stackrel{1}{\Gamma}$ we obtain (28) and from (32) we get (29).
Conversely, if (28) and (29) are satisfied, then making use of (21) we obtain (27) which means that a pair $(\stackrel{1}{\Gamma}, \stackrel{2}{\Gamma})$ is compatible with a structure $Q=\{F, G$, $H\}$ on M.

REMARK 3. From (30) and (17) $\stackrel{m}{\Gamma}$ is a Q-connection and

$$
\begin{equation*}
\nabla_{x}^{m} F=\stackrel{m}{\nabla}_{x} G=\stackrel{m}{\nabla}_{x} H=0 \tag{33}
\end{equation*}
$$

COROLLARY 1. Any linear connection Γ on a manifold M with an almost quasi-quater nion on structure $Q=\{F, G, H\}$ determines a pair $(\stackrel{1}{\Gamma}, \stackrel{2}{\Gamma})$ of linear connections given by (28) and (29) which is compatible with Q.

Following [6] we have the following:
DEFINITION 4. [6]. For a pair of linear connections $\stackrel{1}{\Gamma}$ and $\stackrel{2}{\Gamma}$ on a manifold M the following operators:

$$
\begin{align*}
& \rho_{X Y}=\frac{1}{2}\left(\left[\stackrel{1}{\nabla_{x}}, \stackrel{2}{\nabla_{Y}}\right]+\left[\stackrel{2}{\nabla}_{X}, \stackrel{1}{\nabla}_{Y}\right]-\stackrel{1}{\nabla}_{[X, Y]}-\stackrel{2}{\nabla_{[X, Y]}}\right) \tag{34}\\
& K_{X Y}=\frac{1}{4}\left[\tau_{X}, \tau_{Y}\right] \tag{35}
\end{align*}
$$

are called operators of mixed and deformation curvatures respectively.
PROPOSITION 3. [6]. The following relations are satisfied:

$$
\begin{align*}
& 2 o_{X Y}+4 K_{X Y}=\stackrel{1}{R}_{X Y}+\stackrel{2}{R}_{X Y} \tag{36}\\
& \rho_{X Y}+K_{X Y}=\stackrel{m}{R}_{X Y} \tag{37}
\end{align*}
$$

where $\stackrel{1}{R}_{X Y}, \stackrel{2}{R}_{X Y}$ and $\stackrel{m}{R}_{X Y}$ are curvature operators of connections $\stackrel{1}{\Gamma}, \stackrel{2}{\Gamma}$ and $\stackrel{m}{\Gamma}$ respectively.
Now, we give some properties of operators of mixed and deformation curvatures for a pair of connections compatible with an almost quasi-quaternion structure on M in the following:

THEOREM 3. The operators of mixed and deformation curvatures of a pair of linear connections $(\stackrel{1}{\Gamma}, \stackrel{2}{\Gamma})$ which $i s$ compatible with an almost quasi-quaternion structure $Q=\{F, G, H\}$ on a manifold M satisfy the following conditions:

$$
\begin{align*}
& F \rho_{X Y}=\rho_{X Y} F, \quad G \rho_{X Y}=\rho_{X Y} G, \quad H \rho_{X Y}=\rho_{X Y} H \tag{38}\\
& F K_{X Y}=K_{X Y} F, \quad G K_{X Y}=K_{X Y} G, \quad H K_{X Y}=K_{X Y} H \tag{39}\\
& A \rho_{X Y}=A K_{X Y}=0, \quad B \rho_{X Y}=\rho_{X Y}, \quad B K_{X Y}=K_{X Y} \tag{40}
\end{align*}
$$

where A, B are given by (5) and (6).
PROOF. Making use of the fact that $\stackrel{1}{\Gamma}, \stackrel{2}{\Gamma}$ and $\stackrel{m}{\Gamma}$ are Q-connections, $\stackrel{1}{R}_{X Y}, \stackrel{2}{R}_{X Y}$ and $\stackrel{m}{R}_{X Y}$ satisfy (10), (11) and (12), so from (36) and (37) we obtain (38), (39) and (40).

REFERENCES

[1] ATANASIU, G., Sur les couples de connexions compatibles aux structures presque de contact, Rev. Roumaine Math. Pures. Appl., 22(1977), 427-436.
[2] BONOME, A., CASTRO-BOLANO, R., On the integrability of almost quaternion structures, An. Stiint. Univ. "Al. I. Cuza" Iasi, Sect. Ia, Math. (N. S.), 29(1983), 85 -95.
[3] BUCKI, A., MIERNOWSKI, A., On a pair of connections which is compatible with an almost r-pracontact structure, Demonstratio Math., 17(1984), 683-696.
[4] BUCKI, A., Almost quasi-quaternion manifolds, Hokkaido Math. J., to appear.
[5] NORDEN, A.P., Spaces with affine connections, Izdat. "Nauka" Moscow, 1976, (in Russian).
[6] VAISMAN, I., Sur quelques formules du calcul de Ricci global, Comment. Math Helv., 41(1966-7), 74-87.

Department of Mathematics, Lycoming College, Williamsport, PA17701, USA

