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ZP—ACTION ON SELF-DUAL CONNECTIONS

By Yong Seung Cho

1. Introduection

Let G=2 ’ where p is a prime number. Let M be a simply connected, closed,
smooth 4-dimensional manifold with a positive definite intersection form, and a
smooth G action on it. Let z: E—M be a quaternion line bundle with instanton
number one and with G-action on E through bundle isomorphism such that the
projection is a G-map. A connection on the vector bundle E—M is defined by a
first order linear differential operator

V: Q°(E)—~2'(E).

The connection has a natural extension VI: QI(E)—t.QQ(E). The curvature R” of
the connection is defined as the composition V, VeQ’(EndE). The set & (E)
of all connections on E has a natural affine structure. The set ¢z of all bundle
automorphisms on E forms a Lie group structure by fiberwise multiplication.
The group ¢z is called the gauge group of the bundle E. A connection V is said
to be self dual if *xRV=-+R"Y where * is the Hodge star operator on M. The
gauge group ¢¥ acts on connections and preserves the self duality. The group
G acts on the connections as an extended gauge group and preserves the self-
dual connections when we start with G-invariant metric on M. Then the moduli
space .# of the equivalence classes of self-dual connections on E is a G-space.
This muduli space .# may not be a manifold. By Uhlenbeck argument we may
choose a G-invariant metric on M such that the fixed point set .# *G of the
space .# of irreducible self-dual connections is smooth.

In this paper we will compute the G-index of the fundamental elliptic complex
for each G-invariant self-dual connections and we have Theorem 2.3. From this
Theorem 2.3 we understand the local behavior of the group G in the moduli space
. In section 3, we will study the G-action on the reducible self-dual connections

and we have Theorem 3. 1.
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2. G-Index on Elliptic Complex

For a given SU(2)-vector bundle E—»M, let P—M be the associated principal

SU (2)-bundle. Then we have the Lic algebra bundle adszXsUS(‘E‘S?) on M.
Aiy kg

Assume that the fixed point set F' of G-action on M is F= [P‘.} f‘zlu T bict
where the P/s are isolated points and the I’ * are Riemann surfaces with
genus Zi'
Consider G-invariant elliptic complexi. e. the self-dual connection V is a fixed

point,
a¥ a¥
) 1 -
0-—Q (adcp)s(j:sg (ed p)— Q (ad p)—0.
\'

where ¥ is the formal adjoint operator of " and to get Banach spaces we give
appropriate Sobolev norms on each term as usual.
Assume this complex is complexified. Then as usual we get an equivariant
single Dirac operator:

D: I'(V, XV _®ad p)—— TV _QV_Kad p).

= n

let K={e ¥ : n=0, 1--p—1} be the character group of G.
In th_r}:-’_complex representations which is just the p-th roots of the unity. Let
g=e_‘b bea generator of G and let V be an irreducible self-dual G-invariant
connection. Then the analytic G-index of D is a virtual representation of G,
namely Index (D) =H1(ad Lj?)—.ﬁl2 (ad p)ER(G). By Atiyah-Singer Fixed Point
Theorem, we can compute the index
Index g(D) =trace(g index L))
ch (V. ~V dech (V dch (ad p)td(TM RC)

&
ch (A_N*®0)

dimM*

=(-D)

[TM*]

nMe Ch (V. —V ek (V ek, (ad p)td(TM ®C)

£
e(TM*)ch (4_ N*®0) :

==

4

To calculate ckg(adcp) let us examine Z P action on ad p. Consider a diagram
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2 H
SU(2) Im 5

S |

E P Px su(2)=adp adpxC

2zi

To preserve the SU(2)-structure on E|, . g=e¢ P acts as

2¢
c“’d ' 0 {
aeich—k) | on E| ye for some £ and so on its associated principal bundle

L0 e 7
P. On the a:sociated Lie algebra bundle adp=P x 50(2)5“(2)' G acts by conjug-

ation, i.e.

ik

—2nik

it a e ? g it a
—a —il =2k || g
{ I3

c’T 0
2ri(p—k)
0 e | L0 e
So G acts trivially on edp and adcp:adpés‘)R C. Thus in our case ckg(adcp)ES.

The contribution to the Indcxg(D) ac an isolated fixed point P, &F. Let

2zr 2rs,
01:_—{)" ¢ = p' represent the representation of g on the normal bundle
at P, in M.
6, —if,  —ib,
Chg(V-{--_V—-)Chg(V—) 2 - £ Jg 2 i, i0,
= it, —6, ¢ te )
=1 (=g ")@A=~e¢ )

ch (4_N*RC) t
L L
= =~ 2(1f-cot b cot b )

Thus we have

a : .‘.'f‘. ::s‘.
LEMMA 2.1 Indexg(D)lP,.:——z—(ITCOt 3 cotT)

Next the contribution to the Indexg(D) on a fixed point component TYcFcM

where T" is a Riemann surface with genus 4. Let g act on the normal bundle
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2rity

of T inM by e ? -multiplication on the fibers.

ch, (V =V ek (V_)
e(T*)ch (4_ N*®C)

X —Il —11 Xy mil; —x —=il; ' —%y —nily Biedi
7 3 T, P, 2, by 2 P it
_(e” . Jde ~ (e e Jde © e % ? I
= Jm‘ —ail, [e"+e © ¢7]
xI(l—ex"e = Yi=e M 2 )
2zit, 2nmit; 2nit, 2m’
_fdm 1+x+1+x,)e ’ _ (+e )t e xz)
= °omit, - 2mit, 2mit, 2nit,
A-e®e * ) 1-Q+sxe ? A-e ? —e ? 1)
27t 2nit, 2l
1 ? b e’
= (+e ? d+G+e P )1+ o]
(1—e ER ) 1-¢ ?
; _2::,-:, (1+ 2’;’:) 2ty
e e
= Sail; ["‘1""” Bril, -"2]
(1—¢ ? ) =e * )
2mit,
1 2 ?
= TP Bl orit, %o
2
a—e ? ) (1-e * )°

Here we only consider degree one part because, when we evaluate on the
fundamental homology class [Tz']. the other parts are all zero. x, and x, are
the Euler classes of the tangent bundle and the normal bundle of T;'" in M
respectively, We can calculate x, [T}'"] =my,, and x, (T"'):2—22£

ch (V. =V Dech (V dch_(ad ptd(TERC) .
Tdex ()] =(—1—F—F =% £ ? 7]
e(T JChg(A—lN ®C) '
1 s i
=—3[ el = e, —x:,] [T
(g ® 3 =¢ 2 )
2’!!‘“
- 1 2 7
_"3[ 2zit, + 2mit; r ‘]
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2rit,
[(1—21.)-%-(»:7.1‘-%-2'.—1)2 ’ ]
I

-e ? )°

Hence we have

b k
LEMMA 2.2 Index g(D)z ,};; Index (D) | », - _Z‘ Indexg(D) | -

f. s,

= %(———)(lhtot 7 cotT')

2nity
ke A=2)+m, +2,~De *
L i Téy "
+ 5 6)[ Al ]
? 2
(d=e ~ )
For g"E—zp we can calculate the index
THEOREM 2. 3.
2nxity
nar, MIS. ke 1=2)+m. ., +2.—De *
. 3 i I ) Ta " 7y
Index,.(D)= J;;( 3 )(1+cot—eot— )+;§§1( o) i, ]
(1—e X

where =1, --p—1 and r, s, ¢, are determined by representations on the normal
bundles of the fixed point set in M.

REMARK: (i) In the index calculation, td(T*®C)=1+4¢,(T*®C)=1.

(ii) Above Indexg(D) is the topological index of D evaluated at g. If we know
the exact data, namely the fixed point set, £ P—representation nn the normal
bundles and its Euler numbers then by the formula we calculate explicitly the
topological index.

(iii) For example G=Z,, F= (P, sz}Csz. g=-

Index (D) ):'( )(1 cot—;— -; cot ﬂ;i)

b A—-A)+(m +l.-—1)e- 2
+32( —6)[ LT }
j=1 i
{—g ? 3°

l

25(——(1+0)+2( —){1=Q+A+0-D(=D
ot [1-c-n1*
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=-3
(iv) For simplicity these topological index
put
Indexg,(D) =B, n=0,1, -, p—1

From the G-invariant fundamental elliptic complex. Let us consider the G
action on the virtual representation Hé—HéC—R(@) of the cohomology groups.
Let us split H:’ and Hé into the irreducible decompositions

1 1 P
— 5. ORI
HV Hg,G—)Hg,G.; :QHE,,_, and
2ri

where g=e &=

-1

2 2 -
H,=H,OH,®®H,

J - :._'_.,(.
acts on Hz,.(f:l. 2) by the complex multiplication e ” . Let dimCHi’:m,
dimgH, =m, dim H,=n and dim H.=n. For cach £'=G we have the indices

LEMMA 2.4.

Indgc(D):(mn+m1+ ------ +mp_1)—(n0+n1+----l~up_l) =B,=5
25 M ep1) . 250 (p-1
Indg,(D)=(m0+mle g +---m+pélep )—-(n”+nlez’l Feetn, e ’ )=B,
=, =i tp-2) =l -2
.Indg,(D):(mo-l—mle teetm, e )—(nytme” +tm, e )=8,
2 p-1) 2 1) -l
. Indg,_,(D):(mO—!—mlep teetm, e " )—-(n"-&-nlep ki o Y ’ ):Bp*

Rearrange these equations to compute (m,—n), - and (m 1 )

{ (mn—u@)—!- (’"1_”1) R (”‘p, 1 ~np_1) :Bﬂ

2ni 2ai

‘ b T(ﬂ—l)
‘ (my—n)+(m,—n e +'"+(mp—1_”p—1)e =B,
2ni 2ni '
LB 2 02
2.5 | (my—n) +(m —n e = +---+(mp_1—np_l)e P =8B,
’ ‘ 2:;:‘ -1 ?g:‘
(my—n)+0n —n e +m+(mp—1—”p—1)e :Bp—l
= 27 (-1
Using the fact 1+¢ * +ede ? =0, Except the first row and the first

column, each row and each column are permutations of the group G. For
0<k<I<p—1,
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2t 2ni , 2ri 2z 2ni
——k 2% S p—1)k 2 ZLoa-w
GE{l.ep AT }={1,¢e? L
2ni
» (p—1U k)
e }
By easy calculation we get
THEOREM 2.6
| o 158
my=by="4 (By+B;+Byt++B, )
| i Bo-n ey Rl
| ml—n1=‘5(30+31e +Bze +---+Bp_le )
2nf 2ai 2ri

oL 7] P g
R N (B,+Bie " +B,e +e-4+B, e

2ni

REMARK: (i) For a prime number p, g=e ? G, the fixed point set on M,

F=M=Mf=MF==m®"=(P) U T") M

(i) the topological index B, =5, B,, -, Bp_1 is determined by the formula
(2.3), and the virtual representatoon dimensions m,—n(i=0, -, p—1) is
determined by B, -, B, , and the G-action on them.

(iii) For reducible self-dual connections we replace m,+1 instead of m,
Giv) m]—-rz”:*:;(BU-FBl%-----i—B,,_l) is the dimension of fixed point component

containing 7.
8. ZP~Action on Reducible Self-Dual Connections

Next we would like to consider a Z s action on reducible self-dual connections.
Under our usual assumption on the bundle E—M. We consider the space H(B
of real valued harmonic 2-forms on M. Harmonic 2-forms ¢ means dg=0=d¢
where ¢=—xdx%. Since »4=4%, HE(R)=H2'!'@ o Every harmonic 2-form is
self-dual since the intersection from is positive definite. Also self-dual con-
nections are harmonic. For each reducible connection y=V,&y, on E, the
assignment Y—— +0QV" gives a one-to-one correspondence between gauge-equiv-
alence classes of reducible connections on E and pairs of closed 2-forms +aV

with f oV @V'=1, where 2V'= = RV, Since M is simply connected, the de
M

211
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Rham classes V' are uniquely determined by the integral classes in H (M : 2).
Also every integral class # with #-x=1 comes from a reducible self-dual
connection. Our manifold M’ =CP %% CPz(n—copies).

Let {ibl. ibn] be a basis with b,.bjzé‘l.j in HE(M : Z). For any gEZp‘ g
is a diffeomorphism on M. So (+g" b, -, +g 0] isalsoa basis in H (M : Z).
In the moduli space .# there are reducible self-dual connections (v, -, V]

1
2

which corresponds b=—2RY for i =1, -+, n. Moreover g*b:g* RY'=
i 2w i

1 RV S | Rg(vf)

2r¢ 2nf
ction gV, Since g is an isometry on M, R

class g*bi-g*bi:g% (bi-bt.)zg* (ID)=1 where b.+b, is a generator in H4(M A

which is the curvature from corresponding the conne-

£(Y2 is harmonic and the integral

By definition this is the orientation class. Thus g(V,) is a rducible self-dual

connection.

THEOREM 3.1. Z p—actz'on on E—=M induces a aclion on the set of reducible
connections in the moduli space .# of the self-dual gauge equivalent connections.
Moreover let .# be the set of reducible connections in # and by selling

Vi— ,,_lu. RY where V=V1+VI. the diagram

i

WM :2-E HWM, 2)

Q Q

|
M & g commutes.

REMARK. (i) Suppose that V is a reducible self-dual connection. Then the

isotropy group of V, I'¥ = 1gE§}r|ng_1=V} =S". For any kEZp, v {hgkﬁl

E(;;\gEI’V}:SI because (kgkkl_‘)-k(V)=kgh"I. th_l-kg_lh—l:kngﬁlk_lz
h(V). Also kglh_IZkggh_l implies g,=g..
Since Z, preserves the self-duality, 2(V) is also a self-dual reducible conne-
ction,

(ii) On the Z -action over E—M" and h<Z,, Let b,cH (M : Z) with b,-b,=
1, then there is a complex line bundle Lb._'M with its Euler class &. And

consider the map
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WLe—L, , B HM:Z)—HM:Z)

|

S I
M M b

| — 1)

The induced bundle h-#(Lbl) over M is exactly the bundle corresponding reducible
self-dual connections V and (V)

1
rV=(gey|g(M)=V)=S'cy
r'"V=(ngnh | ger’| =s'cy and

er‘f,a 0
g:[o _:-JEI‘V. From the bundle splitting, the following diagram commutes
e .
and preserves the splittings.

T h ¥
E=L,OL,——Ly3y®Lyg,

g ng|n~"
Lol -2
5Ly,

h(b.)®£’h(bl)'
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