Kyungpook Math. J. Volume 28, Number 2 December, 1988.

A NOTE ON OPERATORS IN THE CLASSES A

By I. B. Jung and C. Y. Park

Let \mathscr{L} be a separable, infinite dimensional, complex Hilbert space and let $\mathscr{L}(\mathscr{U})$ be the algebra of all bounded linear operators on \mathscr{U} . A dual algera is a subalgebra of $\mathscr{L}(\mathscr{U})$ that contains I and is closed in the weak* topology on $\mathscr{L}(\mathscr{U})$. Suppose m and n are cardinal numbers such that $1 \le m$, $n \le \aleph_0$. A dual algebra \mathscr{A} will be said to have property $(A_{m,n})$ if every $m \times n$ system of simultaneous equations of the form

$$(1) \hspace{1cm} [x_i \otimes y_j] = [L_{ij}], \hspace{0.1cm} 0 \leq i < m, \hspace{0.1cm} 0 \leq j < n,$$

where $\{[L_{ij}]\}_{\begin{subarray}{c}0\leq i< m\\0\leq j< n\end{subarray}}^{n}$ is an arbitrary $m\times n$ array from $Q_{\mathscr{A}}$, has a solution $\{x_i\}_{0\leq i< m}$, $\{y_j\}_{0\leq j< n}$ consisting of a pair of sequences of vectors from \mathscr{U} . Furthermore, if m and n are positive integers and r is a fixed real number satisfying $r{\geq}1$, a dual algebra \mathscr{A} (with property $(A_{m,n})$) is said to have propery $(A_{m,n}(r))$ if for every $s{>}r$ and every $m\times n$ array $\{[L_{ij}]\}_{0\leq i< m}$ from $Q_{\mathscr{A}}$, there exist sequences $\{x_i\}_{0\leq i< m}$, $\{y_j\}_{0\leq j< n}$ that satisfy (1) and also satisfy the following conditions:

(2)
$$||x_i||^2 \le s \sum_{0 \le i \le n} ||[L_{ij}]||, 0 \le i \le m,$$

and

(3)
$$\|y_j\|^2 \le s \sum_{0 \le i < m} \|[L_{ij}]\|, \ 0 \le j < n.$$

Finally, a dual algebra $\mathscr{A}\subset\mathscr{L}(\mathscr{U})$ has property $(A_{m, \aleph_0}(r))$ (for some real number $r\geq 1$) if for every s>r and every array $\{[L_{ij}]\}_{\begin{subarray}{l}0\leq i< m\\0\leq j<\infty\end{subarray}}$ from $Q_{\mathscr{A}}$ with summable rows, there exist sequences $\{x_i\}_{0\leq i< m}$ and $\{y_j\}_{0\leq j<\infty}$ of vectors from \mathscr{U} that satisfy (2) and (3) with the replacement of n by \aleph_0 . Properties $(A_{\aleph_0, n}(r))$ and $(A_{\aleph_0, \aleph_0}(r))$ are defined similarly (cf. [5]).

We write D for the open unit disc in the complex plane C and T for the boundary of D. A contraction $T \in \mathcal{L}(\mathcal{U})$ (i.e., $||T|| \leq 1$) is absolutely continuous if in the canonical decomposition $T = T_1 \oplus T_2$, where T_1 is a unitary operator

and T_2 is a completely nonunitary contraction, T_1 is either absolutely continuous or acts on the space(0). We denote by $A=A(\mathcal{U})$ the class of all absolutely continuous contractions T in $\mathcal{L}(\mathcal{L})$ for which the Foias-Sz.-Nagy functional calculus $\phi_T: H^{\infty} \to \mathscr{A}_T$ is an isometry (cf. [5]). Let φ_T be a bounded, linear, one-to-one map from Q_T into L^1/H_0^1 with $\varphi_T^{\pm} = \varphi_T$. Furthermore, if m and n are any cardinal numbers such that $1 \le m$, $n \le \aleph_0$, we denote by $A_{m,n} = A_{m,n}(\mathscr{X})$ the set of all T in $A(\mathcal{X})$ such that the singly generated dual algebra \mathscr{A}_T has property $(A_{m,n})$. H. Bercovici(cf. [4]) and B. Chevreau(cf. [8]) proved independently that $A=A_1(1)$. I. Jung[12] showed that the classes $A_{m,n}$ are distinct one from another. C. Apostol, H. Bercovici, C. Foias and C. Pearcy [1], [2] studied geometric criteria for membership in the class $A_{\aleph_0} = A_{\aleph_0, \aleph_0}$. S. Brown, B. Chevreau, G. Exner and C. Pearcy [7], [9], [10], [11] obtained topological criteria and geometric criteria for membership in the class A_{\aleph_0} or A_{1,\aleph_0} . In [13], I. Jung obtained some sufficient conditions for membership in the class A_{1,\aleph_0} or A_{\aleph_0} . In this paper we obtain an equivalent condition for membership in the classes $A_{m,n}$. The notation and terminology employed herein agree with those in [3], [6] and [14].

Suppose $T{\subseteq}A(\mathcal{X})$ and has minimal coisometric extension

$$B=S^{\times}\oplus R$$

in $\mathcal{L}(\mathcal{K})$, where S is a unilateral shift of some multiplicity in $\mathcal{L}(\mathcal{S})$ if $\mathcal{S}\neq(0)$, S=0 if $\mathcal{S}=(0)$, R is a unitary operator if $\mathcal{U}\neq(0)$ and R=0 if $\mathcal{U}=(0)$ (cf. [10]). We shall use these notations for the following theorem.

THEOREM. Suppose $T \in A(\mathcal{X})$ and m and n are any cardinal numbers such that $1 \leq m$, $n \leq \aleph_0$. Then $T \in A_{m,n}$ if and only if, for $\{[L_{ij}]\}_{\substack{0 \leq i < m \\ 0 \leq j < n}} \subset Q_T$, there exist sequences $\{x_k^{(i)}\}_{k=1}^{\infty} \subset \mathcal{X}$, $\{w_k^{(j)}\}_{k=1}^{\infty} \subset \mathcal{S}$, and $\{b_k^{(j)}\}_{k=1}^{\infty} \subset \mathcal{U}$, such that $\{\|w_k^{(i)}\}_{k=1}^{\infty} \subset \mathcal{U}$ is bounded, $\{x_k^{(i)}\}$ Cauchy sequence and

$$\|(\boldsymbol{\varphi}_{\boldsymbol{B}}^{-1}\boldsymbol{\cdot}\boldsymbol{\varphi}_{\boldsymbol{T}})([L_{ij}]_{\boldsymbol{T}})-[\boldsymbol{x}_{k}^{(i)}\otimes(\boldsymbol{w}_{k}^{(j)}+\boldsymbol{b}_{k}^{(j)})]_{\boldsymbol{B}}\|\rightarrow 0.$$

PROOF. The idea of this proof comes from [10, Theorem 4.4]. Suppose $T \in A_{m,n}(\mathcal{X})$. It follows from the definition of property $(A_{m,n})$ that, for $\{[L_{ij}]\}_{\substack{0 \leq i < m \\ 0 \leq j < n}}$ in Q_T , there exist $x^{(i)}$, $y^{(j)} \in \mathcal{X}$, $0 \leq i < m$, $0 \leq j < n$, such that

$$[L_{ij}]_T = [x^{(i)} \otimes y^{(j)}]_{T}.$$

Set

$$x_k^{(i)} = x^{(i)}, y_k^{(j)} = y^{(j)} = w^{(j)} + b^{(j)} \in \mathcal{S} \oplus \mathcal{U}$$

for any $k \subseteq N$. Then it is obvious that these are required sequences. Conversely, let us

$$x_k^{(j)} = P(w_k^{(j)} + b_k^{(j)}), k \in \mathbb{N},$$

where P is an orthogonal projection from \mathcal{H} onto \mathcal{H} . Since $\{v_k^{(j)}\}$ is bounded, we may suppose w.l.o.g. that $\{a_k^{(j)}\}_{k=1}^{\infty}$ converges weakly to $v^{(j)}$. Moreover, since $\{x_k^{(i)}\}$ is a Cauchy sequence, we have $\{x_k^{(i)}\}$ converges strongly to $x^{(i)}$. Since $\{v_k^{(j)}\}$ is bounded, we have

$$\begin{split} \| [x^{(i)} \otimes v_k^{(j)}] - [x_k^{(i)} \otimes v_k^{(j)}] \| &= \| (x^{(i)} - x_k^{(i)}) \otimes v_k^{(j)} \| \\ &\leq \| x^{(i)} - x_k^{(i)} \| \ \| v_k^{(j)} \| \to 0. \end{split}$$

Also we have

$$\begin{split} \| \left[L_{ij} \right]_T - \left[x_k^{(i)} \otimes v_k^{(j)} \right]_T \| = \| \varphi_B^{-1} \cdot \varphi_T(\left[L_{ij} \right]_T) - \left[x_k^{(i)} \otimes v_k^{(j)} \right]_B \| \\ = \| \varphi_B^{-1} \cdot \varphi_T(\left[L_{ij} \right]_T) - \left[x_k^{(i)} \otimes (w_k^{(j)} + b_k^{(j)}) \right]_B \| \to 0. \end{split}$$

Then

$$\begin{split} \| \left[L_{ij} \right]_T - \left[x^{(i)} \otimes v_k^{(j)} \right]_T \| \leq & \| \left[L_{ij} \right]_T - \left[x_k^{(i)} \otimes v_k^{(j)} \right]_T \| \\ + & \| \left[x_k^{(i)} \otimes v_k^{(j)} \right]_T - \left[x^{(i)} \otimes v_k^{(j)} \right]_T \| \to 0. \end{split}$$

So

$$||[L_{ij}]_T - [x^{(i)} \otimes v_k^{(j)}]_T|| \to 0.$$

We now compute to show that

$$[L_{ij}]_T = [x^{(i)} \otimes v^{(j)}]_{T},$$

and thus complete the proof; for $h = H^{\infty}(T)$, we have

$$\begin{split} \langle h(T), \ [L_{ij}] \rangle &= \lim_k \langle h(T), \ [x^{(i)} \otimes v_k^{(j)}]_T \rangle \\ &= \lim_k \langle h(T)x^{(i)}, \ v_k^{(j)} \rangle \\ &= \langle h(T)x^{(i)}, \ v^{(j)} \rangle \\ &= \langle h(T), \ [x^{(i)} \otimes v^{(j)}]_T \rangle. \end{split}$$

Hence

$$[L_{ij}]_T = [x^{(i)} \otimes v^{(j)}]_T.$$

Therefore the proof is complete.

REFERENCES

- C. Apostol, H. Bercovici, C. Foias and C. Pearcy, Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I, J. Funct. Anal., 63(1985), 369~404.
- [2] _____, Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I, Indiana U. Math. J., 34(1985), 845~855.
- [3] H. Bercovici, Operator theory and arithmetic in H[∞], Math. Surveys and Mono graphs, No. 26, A.M.S. Providence, R.I., 1988.
- [4] _____, Factorization theorems and the structure of operators on Hilbert space, Ann. of Math., 128(1988), 399~413.
- [5] H. Bercovici, C. Foias and C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conference Series, no. 56, A.M.S., Providence, R.I., 1985.
- [6] A. Brown and C. Pearcy, Introduction to operator theory. I, Elements of functional analysis, Springer-Verlag, New York, 1977.
- [7] S. Brown, B. Chevreau and C. Pearcy, On the structure of contraction operators. II, J. Funct. Anal., 76(1988), 30~55.
- [8] B. Chevreau, Sur les contractions à calcul fontionnel isométrique. II, submitted.
- [9] B. Chevreau, G. Exner and C. Pearcy, On the structure of contraction operators.

 Michigan Math. J. (to appear).
- [10] B. Chevreau, C. Pearcy, On the structure of contraction operators. I, J. Funct. Anal., 76(1988), 1~29.
- [11] G. Exner and P. Sullivan, *Normal operators and the classes* A_s , J. Operator Theory, 19(1988), $81\sim94$.
- [12] I.B. Jung Dual operator algebras and the classes A_m , I, J. Operator Theory(submitted).
- [13] _____, Dual operator algebras and the classes A_{m,n}. II, J. Operator Theory (submitted).
- [14] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North Holland Akademiai Kiado, Amsterdam/Budapest, 1970.

Department of Mathematics College of Natural Science Kyungpook National University Taegu 702-701, Korea