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1. Introduction

Many ways of estimating the size of thin sets have been proposed, The first
of these to be extensively developed was established by Hausdorff. Hausdorff
dimension has the overriding advantge from mathematician’s point of view that
Hausdorff measure is an outer measure. However, the Hausdorff dimension of
even relatively simple sets can be hard to calculate. Hausdorff showed that the
Hausdorff dimension of the famous middle-third set of Cantor is log2/log 3.
Since then tremendous amount has been discovered about Hausdorfi dimension.
In this paper we prove a very useful criterion to calculate the Hausdorff
dimension of symmetric Cantor sets.

2, Preliminary and notations

(2.1) Hausdorff Dimension. Suppose that E is a subset of R. For positive a
and &, put
H (E)=inf 5 [0(E)"
where the infimum extends over all contable coverings of E by sets E  with
diameter, J(E")zsup{!x—y]: %, yEE )}, less than e. We define d(¢)=0. As ¢
decreases, the infimum extends over smaller classes, and so HZ(E) does not
decrease. Thus H; has a limit Ha(E). finite or infinite:
H_ (E)1H(E) as ¢ 0.
It is easy to see that H_ is an outer measure. The Hausdorff dimension of E
is defined by considering the behavior of H (E), not as a function of E, but
as a function of e.
It is well known that there exists a unique point a, such that H (E)=oo for
a<a, and H (E)=0 for a> @, This value a, is called the Hausdorff dimension
of E(denoted by dim E).
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(2.2) Symmetric Cantor Sets. Let e= (c) be a fixed sequence of real

k=0
numbers such that

0<2,<¢c,_, for n>1
and put

= — =
r,=c,_,—c, for n=>1,

Let F,.:{EL]E,-’,‘: ¢=0 or 1 for all j}. Then it is clear thatls-tl‘}c" for s#t

in F . In particular then, F, has exactly 2" points. Next, put E=U,_p[tt+
¢,] which, by the above, is a disjoint union of 2" closed intervals of length c,
each. Note that for /EF,, we have t€F, |, t+r, &F, ,, and

t<t—!—c”1<t+rn (<ttr, e, =EC, (D

This shows that £, CE for all #n=1. The set E=Ec=[']::°=l E, will be called
the symmetric Cantor set (on]0, CO]) determined by e¢. We easily see that

E= {E;e‘.r‘.: g,=0orl for all 7).
=
(2.3) The Lebesgue Function [4,5]. Let E=E_ be the symmetric Cantor set
determined by e=(c, )°° as in (2.2). The Lebesgue function determined by e,

L=Lc is defined as follows: For E' s,r’EE let

=1

This defines L on E. Now L is extended to all of [0, 00] by noting first that
for each fixed >0 and {=3" cr. in F,_ (where F ={0}), we have

:lt;

Lit+e, D=L+ & r)=37—+ )52#
“ni2

i=a+2 ¥ i= 12 i
2 1
=3-= r=LO+—
i= 12
=L(t+'n-{—1)‘

[compare (2.2)-(1)]. We define L on @+ec, . t+r, ) to have the constant

value that it has at both of the endpoints, namely, L(#)

is monotone nondecreasing and continuous on [0, 6‘0] and L is constant on each
interval of [0, co] \E.;
(2.4) The Modulus of Continuity. Let JCR be an interval and let f: I—-C
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be a continuous function. Define
w (D=sup{|f(x)—f(*DI|: %, x,=I and |x,—x,|<t) for {=0.

The function w ' is called the modwlus of continuity of f.

3. Results

(3.1) THEOREM. [FROSTMAN] Let E be a compact subset of R. Suppose
that there exists p=M ' (E)(u#£0) such that wﬂ(t)=5upu(,x=_x‘gﬂ([xl.x2])=
O(ta) (¢10) for some a>0. Then H (E) is positive(so dim E=a).

PROOF. Choose 0<C <o such that wq(:)gc:" for £>0. Consider any open

cover {(u'., v'.)}:il of E. Then we have

1)

H

o )“).l_ 00 - )\)-_1— ©o :
;E:l'(v,.—u:. = ngu(v,. #)=6 El';z(.u'.. v

-

>#E) _ lal 5
Given any cover {A'.}:.’ll of E with d(A4,) <e for all 7 and any 6>0, choose,

for each 1, u, <v'. with A,C(u,.. ”.‘) and (v;—ui)a<[J(Ai)]a+ :T by continuity

of the function {* at t=J(Ai). Then

T 0 +0=> 0, -u) = > 0

50
H (E)+0=H_(E)+0> lﬁéll_.

Thus
[lgell
Ha(E)2~ C‘*> 0.

(3.2) THEOREM. Let E be the symmetric Cantor set determined by some
e=(c.),., and let L be the corresponding Lebesgue function. Suppose that

t“=0(wL(t)) (t10) for some a>0.
Then H “(E) is finite(so dim E<a).

PROOF. First we show that

1 2
—kgw['(c*)g?. (D
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Since L(ck)—-L(O)=Alr. the first inequality is clear. Let OS:réc“—ck be given.
2

Since 0 sid C.—fk‘—zf-,;"i are both in F,= {Ef—fs:’i: e, 10, 1) for all 7], we
may define

t,=max{iEF,;: t<x)
and

t:_,:min[!&’EFk: x<<i).
If x-;‘EE#. then L(x)=L(t2) S0

L(x+¢)—LO<Lt,+e)—Lt)=—¢

If xE,, then ¢ <x<t +c,<t, and L(t,)=L(t+c,) so
Lix+e)—Ln<L{t,+e,) ~L(t2)+L(tl—'—ck)—-L(t1):2—2,.

Thus the second inequality in (1) holds too. Choose 0<C <o such that t"ri_TCm!_(t}
for 0<t<1. Since E:Ej and Ej. is the union of 2’ intervals of length €
the definition of Ha(E) shows that if ¢ <e, then H:’ (E)£2j(cj)a. We can take
.~:=2c1. to obtain

o ¥ a

Hﬂ(E)ghﬂj__mQ (",')

<C Ii_mj_mEj w0, (c J<2C.

where the last inequality is from (1).

(3.3) THEOREM. Let E be a symmetric Cantor set and lel L be the corres-
ponding Lebesgue function. If

Inw L(t)
i —a=R as t]0,

then the Hausdorff dimension of E, dim E, is equal to a.
PROOF. Given >0, there exists 0<¢, <1 such that

In w, ()
0<t < pa—¢ <_lh_t— <a+te

> <w ) <"

Frostman's Theorem, applied to the p.=M ([0, 1]) for which u([a, 8])=L(b)—L(a)
whenever 0<<¢<<b<<1, now shows that dim E>a—¢ if a—e>0. Therefore
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dim E>w even if a«=0. On the other hand, (3.2) shows us that
dim E<a+eg, so dim E<<a.

(3.4) THEOREM. Let E be the symmetric Cantor set determined by (ck):c’:o.

If either .
Eln2 se kln2 _
= = or (ii) lun‘Poc Alnrk =a,

CR -,

then dim E=a.

PROOF. Notice that 0<<er 1 since ¢, <2ﬁ'§cU for all £>1. Choose &, with ¢, <L.
with 0<¢<¢,, choose 2=k such that ¢, =t <¢,. Then
(D

—In Ch 11‘—]111.‘) —lnck>0.

3

For given ¢

As seen in the proof of Theorem 3.2
4 el
97 =
wp(e)=2

-

(@

and so, sincz —In is decreasing,
(j—DIn2<-In wL(cj)f';j In2 for all j>1
is nondecreasing, we also have
0<—Inw,(c)<=—Inw (#)
<-—Inw,(c,, ) for our ¢ and &. 3

Since w 4

Therefore, 1)—(3) yield
(&—DIn2 _ (¢k—Dln2 _ ~Inw )  —Inw ®
—Ine,,, = =Int — =t = -Int
_ 7w +DIn2 _ (k+DIn2.
== —Int =  —Int —Inck
and so
k=1 (k+Dln2 _10@® _pi1  pInz
k+1 —lnr;k_l_1 == M = & —lnck‘
R kIn2 . Inw, @) ’
Thus, if ]'mk—»oaﬁ:EfE;:a then hmfloélnt =a whence, by (3.3) dimFE
2 Cpe Thus, if % satisfies

= " and 7t <E;=k+1"j:

- Joti Z =
a. Notice that ¢,<c, ,—¢,

rk<1. then
0<~In rk<—-ln ck<—-ln 71
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S0

k (k+1)In2 < kln2 < kln2
k+1 —lnr,H_1 —lnck —lnr"

Thus (ii)implies (i) and so dim E=e if (ii) holds.
Cp+1

7

(3.5) Corollary. Let E be a symm'eiric Cantor set with constant ratio,

:E(< %) for all k>0. Then dim E=_:_h11_]3?—.
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