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THE QUASI-REVERSIBILITY METHOD APPLICATION TO
PARABOLIC OPERATORS WITH AN INFINITE
NUMBER OF VARIABLES

By S. A. El-Zahaby

Abstract: In the present paper, using the method of Quasi-Reversibility of
R. Lattes and J.L. Lions[7], we have applied this method for a system governed
by parabolic operator with an infinite number of variables. (The control here
is an initial condition).

Introduction

I.M. Gali et al presented in[5] a set of inequalities defining an optimal control
of a system governed by a selfadjoint elliptic operator with an infinite number

of variables

() ()=~ éwﬁw (D +e@u®, q(>v, 1=>0 6
where

and g(x) is a real valued function from space of functions of infinitely many
variables Lz(Rm, dg(x)). constructed by the measure dg(x)=p(xl)dxl®p(x2)dx2

®---defined on the ¢ hull of cylindrical sets in R generated by finite dimensional
Borel sets; g(Rm)=1.
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More details for such construction see [2] and [3].
The system here is ruled by the operator

J_
3 +A@)

where A(#) has the form (1).
The main method consists of solving the problem



124 S.A. El-Zahaby

(%+A)u=0
#=0on ¥
u#(x, T)=the solution at the final time=X(x).

In general, there exists no § such that u$=X this is connected with the
irreversibility of the problem. But on the other hand however small 7 we can
always find § such that s approximates to X within », this is connected with
the backwards uniqueness, The problem is then to find one § yielding such an

approximation.
Some Concepts and Results

Let us consider the elliptic operator
AWDPGx, D=~ ZDg(x, D+e(x, Dh(x, D

where

a

ox, Pk B ©

D P& D=p, "

g(x, t) is a real valued function in x which is bounded and measurable on R
such that ¢(x, £)>>4>0, 4 is a constant.

We have the following chain [9]

L0, T: Wy (R™NCL, 0, T: LR™NCLO, T: W, ()

The space L,(0, T: L'(R®)=L,Q), Q=R*%]0,T[£=rx[0,T], ¥ is the latcral
boundary of Q.

For each ¢ we may write a continuous bilinear form

(t; 4, )=CAWD, v), 4, vEW (R™) (3)

where A(#) is a bounded self-adjoint elliptic operator with an infinite number
of variables maps W;(Roc) onto W, YR™.

This bilinear form is coercive [4-6] in W;(Rw) that means

v>0 (4)

2

z(ts w, W=lul oy

For all #, vEW;(I\’m) the function f—z(x, v) is measurable and continuous on
10, T[ and

z(t; u, v)=a(t; v, u) (5)
From the above consideration and from [4], [5], [6], and [7], we can formulate
the following:
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THEOREM 1. Under the hypotheses (4) and (5) if f and & are given in L2

—1 00, . . .
©.T;: W, (R™)) and L,(R "), respectively then there exists a unique element u
that satisfies

Y Au=f wEL (0, T; Wy (R™),
(0, x)=¢ @ EL,0, T; W, (R™)
©=0 on ¥

Formulation of the Problem

Let X be a given function in LZ(RDQ) and T >0 be given. To each § corres-
ponding the solution #(x, T; &) of

gf,‘ +ABu=0
u(0, x)=§
u=0 on X
uGL,_,(Q). w' &L, (Q)
Now, we set
f(f)—“-f luCx, T)—X | dx )
-

Qur aim is the study of
Inf J(& E€L,(R™)
We can only conjecture, here, that under the hypotheses of Theorem 1, we
have
Inf J(£)=0 Q)
¢=L,(R™)

We can demonstrate the result in particular case.

THEOREM 2, We assume that (5) and
n(t: u, v)=n(u, v)
are independent of t then (7) is true.

Outline of Proof
From [7], it is a matter of showing that «(x, T) spans dense in H.
Let us suppose therefore that ¢=H with
@(T; &), $)=0 YecL,(R™) ®
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We introduce the adjoint family A*(#) of A(¢#) by (8). Using our hypotheses of
theorem 1, there exists a unique v=»(#) such that

—9 L Aw=0

at
v(t)=¢
vEL,(0, T; Wo(R™), v'EL,®, T: W, (R™))
Let us consider the expression

T T
d
' o)+, A= [ 2,
‘]; (G, )+, v°)) j; 2 (u, V)t

=@ (T), v(T))— (u(0), v(0))

=—(, v(0)
Since v(T)=¢ and (#(T), ¢) =0 by hypotheses therefore, (§,2(0))=0, V;’ELE(RC'O)
which 2(0)=0. But from the backward uniqueness property »=0 and hence ¢¢=0
whence the result.

Our Problem

Let (7) be satisfied, with >0, given, it is desired to find EUELQ(RM) such
that
J€)<n ®
In general under the hypotheses of theorem 1, there exists no § such that
uf.zX this is connected with the irreversibility of the problem.

B+ awu=0 (10)
u=0 on ¥ (11
u(x, T)=X (12)

This is improperly posed.

The Quasi-Reversibility Method

The Q.R. method consists in approximating the systems which are properly
posed denoted #, for £>0 the solution of

du,
= +A®u,—eA* (D A(Du, =0 (10)
u (T)=X an
#,|=0 and A(Du|,=0 (12)
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4, €L,0, T; DAM®Y), -H=weL,©, T: DA®))
where
D(AW) = lv: vEW (R™); ADVEL,(R™))
The domain of the operator A(#) considered as an operator as an unbounded
operator in LZ(RW) with the norm

- 2 2 1/2
121 5 gryy = 10l my + 1A )

it is a Hilbert space.
A*WAMEL (D(AW); (DCAMD)).

THEOREM 3. Under the hypotheses of theorem (1) and suppose that DA(t)=V,_,
=a space independent of 1.
Problem (10-12) is properly posed, there exists a unique u_ satisfying (10-12)
and u, L0, T: D(AW).
w' EL,0, T; D(A@®D").

PROOF. For #, vEV,, we set
at, u, v)=(AWu, v)—e(A®u, A®v,)
This is a continuous bilinear form and by hypotheses (4) and (5) we have the
results

—a(t, v, v) Zlv,- Clvliv =1 c>0

'L(r™
Now,
~a(t, v, 1)=¢lAWD,; g~ (AWBV, 1)

el AW, 13 gy —€/21ADY N o= 013 ooy

with C dependent on e.
Now, we take §=#,(0). Under the given consideration, we may apply the

theorems of Lattes and Lions [7] to obtain our result concerning convergence.

THEOREM 4. Let the hypotheses of theorem (2), let U, be the solution of

-4
dt
U (0)=u,(0)=§
with wuc the solution of (10-12), when e—0 we have
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U (T)—X.
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