THE QUASI-REVERSIBILITY METHOD APPLICATION TO PARABOLIC OPERATORS WITH AN INFINITE NUMBER OF VARIABLES

By S. A. El-Zahaby

Abstract: In the present paper, using the method of Quasi-Reversibility of R. Lattes and J. L. Lions[7], we have applied this method for a system governed by parabolic operator with an infinite number of variables. (The control here is an initial condition).

Introduction

I.M. Gali et al presented in [5] a set of inequalities defining an optimal control of a system governed by a selfadjoint elliptic operator with an infinite number of variables

$$(Au)(x) = -\sum_{k=1}^{\infty} (D_k^2 u)(x) + q(x)u(x), \ q(x) \ge \nu, \ 1 \ge \nu > 0$$
 (1)

where

$$(D_k u)(x) = \frac{1}{\sqrt{p_k(x_k)}} \frac{\partial}{\partial x_k} (\sqrt{p_k(x_k)} u(x))$$

and q(x) is a real valued function from space of functions of infinitely many variables $L_2(R^{\infty}, dg(x))$. constructed by the measure $dg(x) = p(x_1)dx_1 \otimes p(x_2)dx^2 \otimes \cdots$ defined on the σ hull of cylindrical sets in R^{∞} generated by finite dimensional Borel sets; $g(R^{\infty}) = 1$.

$$\|u\|_{L_{2}(\mathbb{R}^{2},\ dg(x))} = \left(\int_{\mathbb{R}^{n}} |u|^{2} dg(x)\right)^{1/2} < \infty$$

More details for such construction see [2] and [3].

The system here is ruled by the operator

$$\frac{\partial}{\partial t} + A(t)$$

where A(t) has the form (1).

The main method consists of solving the problem

$$\left(\frac{\partial}{\partial t} + A\right) u = 0$$

$$u = 0 \text{ on } \Sigma$$

u(x,T) = the solution at the final time=X(x).

In general, there exists no ξ such that $u_{\xi} = X$ this is connected with the irreversibility of the problem. But on the other hand however small η we can always find ξ such that u_{ξ} approximates to X within η , this is connected with the backwards uniqueness. The problem is then to find one ξ yielding such an approximation.

Some Concepts and Results

Let us consider the elliptic operator

$$A(t)\phi(x, t) = -\sum_{k=1}^{\infty} D_k^2 \phi(x, t) + q(x, t)\phi(x, t)$$

where

$$(D_k \phi)(x, t) = p_k^{-1/2} - \frac{\partial}{\partial x_k} (p_k^{1/2} \phi)$$
 (2)

q(x, t) is a real valued function in x which is bounded and measurable on R such that $q(x, t) \ge \lambda > 0$, λ is a constant.

We have the following chain [9]

$$L_2(0,\ T;\ \boldsymbol{W}_0^1(\boldsymbol{R}^\infty)) \subseteq L_2(0,\ T;\ L_2(\boldsymbol{R}^\infty)) \subseteq L_2(0,\ T;\ \boldsymbol{W}_0^{-1}(\boldsymbol{R}^\infty))$$

The space $L_2(0,\,T;\,L^2(R^\infty))=L_2(Q),\,\,Q=R^\infty x]\,0,\,T\,[\varSigma=\varGamma x\,[0,T]\,,\,\,\varSigma$ is the lateral boundary of Q.

For each t we may write a continuous bilinear form

$$\pi(t; u, v) = (A(t)u, v), u, v \in W_0(R^\infty)$$
 (3)

where A(t) is a bounded self-adjoint elliptic operator with an infinite number of variables maps $W_0^1(R^{\infty})$ onto $W_0^{-1}(R^{\infty})$.

This bilinear form is coercive [4-6] in $W_0^1(R^\infty)$ that means

$$\pi(t; u, u) \ge \nu \|u\|^2_{W_o(R^-)} \quad \nu > 0 \tag{4}$$

For all u, $v = W_0^1(R^\infty)$ the function $t \to \pi(u, v)$ is measurable and continuous on 0, T[and

$$\pi(t; u, v) = \pi(t; v, u) \tag{5}$$

From the above consideration and from [4], [5], [6], and [7], we can formulate the following:

THEOREM 1. Under the hypotheses (4) and (5) if f and ξ are given in L_2 (0, T; $W_0^{-1}(R^\infty)$) and $L_2(R^\infty)$, respectively then there exists a unique element u that satisfies

$$\begin{array}{ll} \frac{du}{dt} + A(t)u = f & u \in L_{\underline{0}}(0, T; W_0^1(R^{\infty})), \\ u(0, x) = \xi & u' \in L_{\underline{0}}(0, T; W_0^{-1}(R^{\infty})) \\ u = 0 & \text{on } \Sigma \end{array}$$

Formulation of the Problem

Let X be a given function in $L_2(R^{\infty})$ and T>0 be given. To each ξ corresponding the solution $u(x, T; \xi)$ of

$$\begin{aligned} \frac{\partial u}{\partial t} + A(t)u &= 0 \\ u(0, x) &= \xi \\ u &= 0 \quad \text{on } \Sigma \\ u &= L_2(Q), \quad u' &= L_2(Q) \end{aligned}$$

Now, we set

$$J(\xi) = \int_{R^{n}} |u(x, T) - X|^{2} dx \tag{6}$$

Our aim is the study of

Inf
$$J(\xi)$$
 $\xi \in L_2(R^{\infty})$

We can only conjecture, here, that under the hypotheses of Theorem 1, we have

$$Inf \ J(\xi) = 0$$

$$\xi \in L_2(R^{\infty})$$
(7)

We can demonstrate the result in particular case.

THEOREM 2. We assume that (5) and

$$\pi(t; u, v) = \pi(u, v)$$

are independent of t then (7) is true.

Outline of Proof

From [7], it is a matter of showing that u(x, T) spans dense in H. Let us suppose therefore that $\phi \equiv H$ with

$$(u(T; \boldsymbol{\xi}), \phi) = 0$$
 $\forall \boldsymbol{\xi} \in L_{2}(R^{\infty})$ (8)

We introduce the adjoint family $A^*(t)$ of A(t) by (8). Using our hypotheses of theorem 1, there exists a unique v=v(t) such that

$$\begin{split} -\frac{\partial v}{\partial t} + & A(t)v = 0 \\ & v(t) = \phi \\ v \in & L_2(0, T; W_0^1(\boldsymbol{R}^\infty)), \quad v' \in & L_2(0, T; W_0^{-1}(\boldsymbol{R}^\infty)) \end{split}$$

Let us consider the expression

$$\int_0^T [(u', v) + (u, v')] dt = \int_0^T \frac{d}{dt}(u, v) dt$$

$$= (u(T), v(T)) - (u(0), v(0))$$

$$= -(\xi, v(0))$$

Since $v(T) = \phi$ and $(u(T), \phi) = 0$ by hypotheses therefore, $(\xi, v(0)) = 0$, $\forall \xi \in L_2(R^{\infty})$ which v(0) = 0. But from the backward uniqueness property v = 0 and hence $\phi = 0$ whence the result.

Our Problem

Let (7) be satisfied, with $\eta>0$, given, it is desired to find $\xi_{\eta}\equiv L_2(R^{\infty})$ such that

$$J(\boldsymbol{\xi}_{\eta}) \leq \eta$$
 (9)

In general under the hypotheses of theorem 1, there exists no ξ such that $u_{\xi} = X$ this is connected with the irreversibility of the problem.

$$\frac{\partial u}{\partial t} + A(t)u = 0 \tag{10}$$

$$u=0$$
 on Σ (11)

$$u(x, T) = X \tag{12}$$

This is improperly posed.

The Quasi-Reversibility Method

The Q.R. method consists in approximating the systems which are properly posed denoted u_{ε} for $\varepsilon > 0$ the solution of

$$\frac{\partial u_{\varepsilon}}{\partial t} + A(t)u_{\varepsilon} - \varepsilon A^{*}(t)A(t)u_{\varepsilon} = 0 \tag{10}$$

$$u_{\varepsilon}(T) = X \tag{11}$$

$$u_{\varepsilon}|_{\Sigma} = 0$$
 and $A(t)u_{\varepsilon}|_{\Sigma} = 0$ (12)

 $\begin{array}{ll} u_{\varepsilon}\!\!\in\!\!L_{2}\!(0,\,T;\;D(A(t))), & \frac{du}{dt}\!=\!u'\!\in\!L_{2}\!(0,\,T;\;D(A(t))') \\ \text{where} & \end{array}$

$$D(A(t)) = \{v : v \in W_0'(R^{\infty}); A(t)v \in L_2(R^{\infty})\}$$

The domain of the operator A(t) considered as an operator as an unbounded operator in $L_2(R^{\infty})$ with the norm

$$\|v\|_{D(A(t))} = (\|v\|_{W'_{\circ}(\mathbb{R}^n)}^2 + \|A(t)v\|_{L_2(\mathcal{Q})}^2)^{1/2}$$

it is a Hilbert space.

$$A^*(t)A(t) \in \mathcal{L}(D(A(t); (D(A(t))').$$

THEOREM 3. Under the hypotheses of theorem (1) and suppose that $DA(t)=V_2$ = a space independent of t.

Problem (10-12) is properly posed, there exists a unique u_{ε} satisfying (10-12) and $u_{\varepsilon} \!\!\in\!\! L_2(\!0,T;D(A(t)).$

$$u'_{\varepsilon} \in L_2(0, T; D(A(t))').$$

PROOF. For u, $v \in V_2$, we set

$$a(t,\,u_{\varepsilon},\,v_{\varepsilon})\!=\!(A(t)u_{\varepsilon},\,v_{\varepsilon})\!-\!\varepsilon(A(t)u_{\varepsilon},\,A(t)v_{\varepsilon})$$

This is a continuous bilinear form and by hypotheses (4) and (5) we have the results

$$-a(t,\,v_{\varepsilon},\,v_{\varepsilon}) + \lambda \|v\|_{L_{2}(R^{*})}^{2} \geq C \|v_{\varepsilon}\|_{V_{u}}^{2} \qquad \forall v_{\varepsilon} \in V_{2},\ C > 0$$

Now.

$$\begin{split} -a(t, \ v_{\varepsilon}, \ v_{\varepsilon}) &= \varepsilon \|A(t)v_{\varepsilon}\|_{L_{\mathbf{z}}(R^{\mathbf{w}})}^{2} - (A(t)v_{\varepsilon}, \ v_{\varepsilon}) \\ &\geq \varepsilon \|A(t)v_{\varepsilon}\|_{L_{\mathbf{z}}(R^{\mathbf{w}})}^{2} - \varepsilon/2 \|A(t)v_{\varepsilon}\|_{L_{\mathbf{z}}(R^{\mathbf{w}})}^{2} - \frac{1}{2\varepsilon} \|v_{\varepsilon}\|_{L_{\mathbf{z}}(R^{\mathbf{w}})}^{2} \end{split}$$

with C dependent on ε .

Now, we take $\xi = u_{\varepsilon}(0)$. Under the given consideration, we may apply the theorems of Lattes and Lions [7] to obtain our result concerning convergence.

THEOREM 4. Let the hypotheses of theorem (2), let U_{ε} be the solution of

$$\frac{dU_{\varepsilon}}{dt} + A(t)U_{\varepsilon} = 0$$

$$U_{\varepsilon}(0) = u_{\varepsilon}(0) = \xi$$

with u^{ϵ} the solution of (10-12), when $\epsilon \rightarrow 0$ we have

$U_{\varepsilon}(T) \rightarrow X$.

Acknowledgement

I would like to express my deepest gratitude to Professor I.M. Gali. Also, I thank him for his fruitful discussion and valuable notes which made this work with this fine picture. Also, I am grateful to my colleagues who share me many successful seminars thanks to them, the work was developed accurately.

REFERENCES

- Berezanskii, Yu.M., "Self-adjoint operators on spaces of functions of infinitely many variables", Naukova Dumka, Kiev, 1979, (Russian) (This book is under translation by the Amer. Math. Soc., Trans. Math., Monographs).
- Berezanskii, Yu.M. and Gali, I.M., Positive definite functions of infinitely many variables in a layer, Ukrainian Math. Z. 1972, 24, No. 4, 435—464.
- Berezanskii, Yu. M., Gali, I. M. and Zuk, B. A., Positive definite functions of infinite many variables, Soviet Math. Dokl., Vol. 13(1972), No. 2, 314—317.
- Gali, I.M. and El-Saify, H.A., Time optimal control of a system governed by a second order elliptic and parabolic operator with an infinite number of variables, I.C.M. Poland, August 1983.
- 5. Gali, I.M. and El-Saify, H.A., Optimal control of a system governed by a self-adjoint elliptic operators with an infinite number of variables, Proceedings of the International Conference on Functional Differential Systems and Related Topics, II, Warsaw, Poland, May 1981, 126-133.
- Gali, I.M. and El-Saify, H.A., Optimal control of a system governed by hyperbolic operator with an infinite number of variables, J. of Mathematical Analysis and Applications, Vol. 85, No. 1, January 1982, pp. 24-30.
- Lattes, R. and Lions J.L., The method of quasi-rever sibility applications to partial differential equations, American Elsevier Publishing Company, Inc., New York, 1969.
- Lions, J.L., Optimal control of system governed by partial differential equations, Springer-Verlag Series, New York, Band 170(1971).
- Lions, J.L. and Magenes, E., Non-homogeneous boundary value problem and applications, Springer-Verlag, Vols. I & II, New York (1972).

Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, EGYPT