FRACTIONAL DIFFERENTIAL EQUATIONS

By El-Sayed, A.M.A.

Abstract: In recent years, several authors have dealt with the fraction derivative [1], in special functions [2], convolution integral equation [5], differintegral equation [4], the derivative of H-function [6], and some other applications. The present paper considers the fraction derivative in the form of differential equation.

1. Introduction

Consider the differential equation of the form

$$\frac{d^{\alpha}x}{dt^{\alpha}} = f(t, x(t)), t > 0, 0 < \alpha < 1$$
(1.1)

Our aim is to examine the concept of solution, its existence, uniqueness, and its coincidence (when $\alpha \longrightarrow 1$) with the one of the initial value problem

$$\frac{dx}{dt} = f(t, x(t)), \ t > 0 \tag{1.2}$$

$$x(0) = 0 \tag{1.3}$$

application of singular integral equation is also considered.

2. Properties of Solution

Put I=(0,T), and $D=I\times C(I)$, where C(I) is the class of all continuous functions defined on I, and $||x||=\max_{t}|x(t)|$, $x\in C(I)$.

LEMMA 2.1. Let $x \in C(I)$, and $f(t, x(t)) \in C(D)$. If a solution of (1.1) exists in C(I), then it is given by

$$x(t) = \frac{1}{\Gamma(\alpha)} \int_0^t \frac{f(\theta, x(\theta))}{(t-\theta)^{1-\alpha}} d\theta$$
 (2.1)

PROOF. From the properties of the fractional derivatives [1], we can write (1.1) in the form

$$x_{-\alpha}(t) = f(t, x(t))$$

or

$$x(t)*\phi_{-\alpha}=f(t,x(t))$$

taking the convolution with ϕ_{α} , we get

$$x(t)*\phi_{-\alpha}*\phi_{\alpha}=f(t,x(t))*\phi_{\alpha}$$

SO

$$x(t) = f(t, x(t)) * \phi_{\alpha}$$

$$= \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{f(\theta, x(\theta))}{(t - \theta)^{1 - \alpha}} d\theta$$

where

$$\phi_{-k}(t) = \delta^{(k)}(t), \quad k = 0, 1, 2, \cdots$$

$$\phi_{-k}(t) = \frac{t^{-k-1}}{\Gamma_{(-k)}} \quad \text{for other values of } k.$$

COROLLARY 2.1. When $\alpha \longrightarrow 1$, the solution (2.1) of (1.1) coincides with the solution of the initial value problem (1.2) and (1.3).

THEOREM 2.1. Let $f(t, x(t)) \in C(D)$.

If f(t, x(t)) satisfies the Lipschitz condition

$$|f(t, \ x_1(t)) - f(t, x_2(t))| \leq k |x_1(t) - x_2(t)| \tag{2.2}$$

then there exists a unique solution of (1,1) in C(I), where

$$T < \frac{\alpha\sqrt{\Gamma(\alpha+1)}}{k}$$

PROOF. Let

$$Fx = \frac{1}{\Gamma(\alpha)} \int_0^t \frac{f(\theta, x(\theta))}{(t - \theta)_{1 - \alpha}} d\theta \tag{2.3}$$

Since f(t, x(t)) is continuous and satisfies the Lipschitz condition (2.2), it follows that

$$\begin{split} |Fx_1 - Fx_2| & \leq \frac{k}{\Gamma_{(\alpha)}} \int_0^t \frac{|x_1(\theta) - x_2(\theta)|}{(t - \theta)^{1 - \alpha}} d\theta \\ & \leq \frac{k}{\Gamma(\alpha)} \max_t |x_1(t) - x_2(t)| \int_0^t \frac{d\theta}{(t - \theta)^{1 - \alpha}} \\ \|Fx_1 - Fx_2\| & \leq \frac{k}{\Gamma(\alpha)} t^{\alpha} \|x_1 - x_2\|, \end{split}$$

 $||Fx_1 - Fx_2|| \le \frac{k}{\alpha F(\alpha)} t^{\alpha} ||x_1 - x_2||,$ i. e.,

so the map $F: C(I) \longrightarrow C(I)$ is contraction map if

$$\frac{k}{\alpha \Gamma(\alpha)} t^{\alpha} < 1$$

$$t < \sqrt{\frac{\Gamma(\alpha+1)}{k}} = T$$
(2.4)

i.e. if

and then by the fixed point theorem [3] we can deduce that there exists a unique solution $x(t) \in C(I)$ of (1,1).

Moreover [3] this solution may be constructed by means of the convergent sequence

$$x_{n+1}(t) = \frac{1}{\Gamma(\alpha)} \int_0^t \frac{f(\theta, x_n(\theta))}{(t-\theta)^{1-\alpha}} d\theta, \quad n=1, 2, \dots$$
 (2.5)

COROLLARY 2.2. If $||f(t,x(t))|| \leq M$, then

$$||x|| \le \frac{Mt^{\alpha}}{\Gamma(a+1)}, \ t > 0 \tag{2.6}$$

PROOF. From (2.1) we can deduce

$$|x(t)| \leq \frac{1}{\Gamma(\alpha)} \max |f(t, x(t))| \int_0^t (t-\theta)^{-1+\alpha} d\theta$$

$$||x|| \leq \frac{M}{\Gamma(\alpha)} \frac{t^{\alpha}}{\alpha} = \frac{Mt^{\alpha}}{\Gamma(\alpha+1)}, \ t > 0.$$

i.e.

3. Application

Now if we want solve the singular integral equation

$$\int_{0}^{t} \frac{x(\theta)}{(t-\theta)^{1+\alpha}} d\theta = f(t, x(t)), \quad 0 < \alpha < 1$$

$$x(t) \in C(I), \quad I = (0, T),$$

$$(3.1)$$

where

$$x(t) \in C(I), I = (0, I),$$

and

$$f(t,x(t))\in C(D),\ D=I\times C(I).$$

The properties of the fraction derivatives can be used to reduce (3.1) to the form

$$\frac{1}{\Gamma(-\alpha)} \int_0^t \frac{x(\theta)}{(t-\theta)^{1+\alpha}} d\theta = \frac{1}{\Gamma(-a)} f(t, x(t))$$

i.e., to the form

$$\frac{d^{\alpha}x(t)}{dt^{\alpha}} = \frac{1}{\Gamma(-\alpha)} f(t, x(t)) \qquad 0 < \alpha < 1$$

which by theorem (2.1) has the unique solution given by the sequence

$$x_{n+1}(t) = \frac{1}{\Gamma(-\alpha)\Gamma(\alpha)} \int_0^t \frac{f(\theta, x_n(\theta))}{(t-\theta)^{1-\alpha}} d\theta.$$

REFERENCES .

- [1] GELFAND, I.M, G.E. SHILOV, Generalized functions, Vol. 1, Moscow (1958).
- [2] J.L. LAVOIE, T.J. OSLER, and R. TREMBLAY, Fractional derivatives and special functions, SIAM Rev. 18(1976).
- [3] RUTH. F. CURTAIN, A.J. PRICHARD, Functional analysis in modern applied mathematics, A.P(1977).
- [4] H.M. SRIVASTAVA, KATSUYOKI NISHIMOTO, Some fractional differentegral equations, J. Math. Anal. Appl 106, (1985).
- [5] H.M. SRIVASTAVA, C.L. KOUL, R.K. RAINA, A class of convolution integral equations, J. Math. Anal. Appl. 108, (1985).
- [6] H.M. SRIVASTAVA, S.P. GOYAL, Fractional derivatives of the H-function of several variables, J. Math. Anal. Appl. 112 (1985).

Math. Department, Faculty of Science, Alexandria University, Alexandria, EGYPT