Kyungpook Math. J.
Volume 28, Number 1
June, 1988

ON THE LARGE INDUCTIVE DIMENSION OF TYCHONOFF SPACE

By Ali Kandil \& M. A. Ismail

Introduction

We introduce a large inductive dimension function, f_{x} Ind X for a Tychonoff space X. We extend some previous results, that are known for normal space to arbitrary Tychonoff space. Moreover we show that f_{x} Ind $X=\operatorname{Ind} X$ for any normal space X. So that the theory of f Ind of a Tychonoff spaces may be consider as an extension of the theory of Ind of normal spaces.
In this paper all considered spaces are assumed to be Tychonoff. The family of all open (closed) subsets of a space X is denoted by $\tau\left(\tau^{c}\right)$. For $A \subseteq X ; O_{A}$ denotes the largest open subset of the Stone-cech compactification βX of X with the property that $O_{A} \cap X=A^{0}$. The closure of $A \subseteq X$ in βX will be denoted by $b A$, that is $b A=\bar{A}^{\rho X}$, and the boundary of A by $\mathbf{F r} A$.

1. Preliminaries

DEFINITION 1. (i) The subsets A_{1} and A_{2} of X are said to be completely separated in X, and we are write $A_{1} f_{x} A_{2}$, if and only if there exists a continuous function $f: X \longrightarrow I$ such that $f\left(A_{1}\right)=\{0\}$ and $f\left(A_{2}\right)=\{1\}$.
(ii) A subset A of X is called f_{X}-neighbourhood of $B \subseteq X$, in symbol $A \supset B$, if and only if $B f_{X}(X \mid A)$.
(iii) We say that $Y \subseteq X$ has the property C^{*}, denoting this by $Y \in C^{*}(X)$, if and only if every continuous function $f: Y \longrightarrow I$ can be continuously extended over X.

Using that f_{X} is the finest proximity on a given space (X, τ) which is compatible with $\tau[2], \quad[3]$ and [4], we deduce the following properties of f_{X} :

Proposition 1. Let A_{1}, A_{2} and A are subsets of X, then:
(i) $A_{1} f_{X} A_{2} \Longrightarrow \exists B_{1}, \quad B_{2} \subseteq X \ni B_{i} \subset A_{i}$ and $B_{1} f_{X} B_{2}$.
(ii) $A_{1} f_{X} A_{2} \Leftrightarrow \bar{A}_{1} f_{X} \bar{A}_{2} \Leftrightarrow b A_{1} \cap b A_{2}=\phi$.
(iii) $A_{1} f_{X} \bar{A}_{2} \Longrightarrow \bar{A}_{2} \subseteq X \mid A_{1}$ and $A_{2} \subseteq\left(X \mid A_{1}\right)^{0}$.
(iv) $\left(X \mid A_{1}\right) f_{X}\left(X \mid A_{2}\right) \Longrightarrow O_{A_{1}} \cup O_{A_{2}}=\beta X$.
(v) If X is normal, then $A_{1} f_{X} A_{2} \Leftrightarrow \bar{A}_{1} \cap \bar{A}_{2}=\phi$.
(vi) $A_{1} \supset A_{2} \Longrightarrow A_{1} \supseteq A_{2}$.
(vii) $A_{1} \supseteq A_{2} \supset A_{3} \supseteq A_{4} \Longrightarrow A_{1} \supset A_{4}$.
(viii) $A_{1} \supset A_{2} \Longrightarrow X\left|A_{2} \supset X\right| A_{1}$.

(xi) $A_{1} \supset A_{2} \Longrightarrow O_{A_{1}} \supseteq b A_{2}$.
(xii) $b A=\beta X \mid O_{(X \mid A)}$.
(xiii) $O_{A}=O_{A^{*}}$.
(xiv) $b O_{A}=b A \quad \forall A \in \tau$.
(xv) $O_{A_{1} \cap A_{2}}=O_{A_{1}} \cap O_{A_{2}}$.
(xvi) $O_{\bigcup_{\lambda} A_{\lambda}} \supseteq \bigcup_{\lambda} O_{A_{\lambda}}$.
(xvii) If $A_{1} \cap A_{2}=\phi$ and $A_{1}, A_{2} \in \tau$, then $O_{A_{1}} \cup O_{A 2}=O_{A 1 \cup A 2^{*}}$
(xviii) Fr $O_{A}=b$ Fr $A \forall A \in \tau$.
(xix) If $Y \in C^{*}(X)$ and $A_{1}, A_{2} \subseteq Y$, then $A_{1} f_{X} A_{2} \Leftrightarrow A_{1} f_{Y} A_{2}$.
($x x$) If $Y \in C^{*}(X)$, then $b x=\beta Y$.
DEFINITION 2. Let $Y \subseteq X$. The triple $\left(L, V_{1}, V_{2}\right)$, where V_{1} and V_{2} are disjoint open subsets of Y, is called f_{X}-partition between $A_{1}, A_{2} \subseteq Y$ in Y if and only if $Y \mid L=V_{1} \cup V_{2}$ and $A_{i} f_{X}\left(Y \mid V_{i}\right)$ for $i=1$, 2. The following lemma is obvious.

LEMMA 1. Let $Y \subseteq X$ and $F_{1}, F_{2} \subseteq Y$ such that $F_{1} f_{X} F_{2}$. If $\left(L, V_{1}, V_{2}\right)$ is a partition between $b F_{1}$ and $b F_{2}$ in βX (in sense $|1|$), then $\left(L \cap Y, V_{1} \cap Y, V_{2} \cap Y\right)$ is a f_{X}-partition between F_{1} and F_{2} in Y.

LEMMA 2. Let $F_{1}, F_{2} \subseteq X$ and $F_{1} f_{X} F_{2}$. If $\left(L, V_{1}, V_{2}\right)$ is a f_{X}-partition between F_{1} and F_{2} in X, then $\left(b L, O_{V_{1}}, O_{V_{2}}\right)$ is a partition between $b F_{1}$ and $b F_{2}$ in βX.

PROOF. From definition 2 we have;

$$
X \mid L=V_{1} \cup V_{2} \text { and } V_{1} \supseteq F_{i} \text { for } i=1,2
$$

Let $L_{i}=L \cup V_{i}$, then it is clear that

$$
L_{i} \in \tau^{c}, \quad F_{1} f_{X} F_{2} \text { and } L_{2} f_{X} L_{1}
$$

Hence $b L_{1} \cap b F_{2}=b L_{2} \cap b F_{1}=\phi$, by proposition (1-ii). Using proposition (1-xii) we have

$$
b F_{1} \subseteq \beta X \mid b L_{2}=O_{X \mid L_{1}}=O_{V_{1}}
$$

and $b F_{2} \subseteq \beta X \mid b L_{1}=O_{X \mid L_{2}}=O_{V_{2}}$.
Since $V_{1} \cap V_{2}=\phi$, proposition (1-xv) imply.

$$
O_{V_{\mathrm{t}}} \cap O_{V_{\mathrm{z}}}=O_{V_{\mathrm{t}} \cap V_{\mathrm{z}}}=\phi .
$$

Now $X \mid L=V_{1} \cup V_{2}$, by proposition (1-xvii) we have;

$$
O_{X \mid L}=\beta X \mid b L=O_{V_{1} \cup V_{2}}=O_{V_{1}} \cup O_{V_{2}} .
$$

Thus the triple ($b L, O_{V}, O_{V_{2}}$) is a partition between $b F_{1}$ and $b F_{2}$ in βX.

2. The large inductive of Tychonoff space

Definition 3. Let (X, τ) be a Tychonoff space and $Y \subseteq X$. The f_{X}-large inductive dimension of Y, denoted by f_{X} Ind Y, is defined inductively as follows:
f_{X} Ind $Y=-1$ iff $Y=\phi$. For a non-negative integer n, f_{X} Ind $Y \leq n$ means that for each pair of subsets F_{1} and F_{2} of Y, for which $F_{1} f_{X} F_{2}$, there exists a f_{X}-partition (L, V_{1}, V_{2}) between F_{1} and F_{2} in Y such that

$$
\begin{aligned}
& f_{X} \text { Ind } L \leq n-1, \\
& f_{X} \text { Ind } Y=n \text { iff } n-1<f_{X} \text { Ind } Y \leq n \text { and } \\
& f_{X} \text { Ind } Y=\infty \text { iff there is no } n \text { for which } f_{X} \text { Ind } Y \leq n .
\end{aligned}
$$

Using proposition (i-v, xx) and the above definiticn, one may easily prove the following three theorems:

Theorem 1: If $Y \in C^{*}(X)$, then f_{X} Ind $Y=f_{Y}$ Ind Y.
THEOREM 2. If $Z \subseteq Y \subseteq X$ and $Y \in C^{*}(X)$, then f_{X} Ind $Z=f_{Y}$ Ind Z.
THEOREM 3. If X is a normal space, then f_{X} Ind $X=$ Ind X.
THEOREM 4. If $Z \subseteq Y \subseteq X$, then f_{X} Ind $Z \leq f_{X}$ Ind Y.
PROOF. Let f_{X} Ind $Y=k$. For $k=-1$ the result is trivial. We assume its validity for $k<n$ and suppose $k=n$.
Let $F_{1}, F_{2} \subseteq Z$ be suth that $F_{1} f_{X} F_{2}$. Then there exists a f_{X}-partition (L, U_{1}, U_{2}) between F_{1} and F_{2} in Y, for which f_{X} Ind $L \leq n-1$. Evidently the triple $\left(L \cap Z, U_{1} \cap Z, U_{2} \cap Z\right)$ is a f_{X}-partition between F_{1} and F_{2} in Z, and hence by inductive assumption,

$$
f_{X} \text { Ind }\left(L \cap Z \leq f_{X} \text { Ind } L \leq n-1 .\right.
$$

Thus f_{X} Ind $Z \leq f_{X}$ Ind Y.

COROLLARY 1. If $Y \subseteq X$, then f_{X} Ind $Y \leq f_{X}$ Ind X.
COROLLARY 2. If $Y \in C^{*}(X)$, then f_{Y} Ind $Y \leq f_{X}$ Ind X.
THEOREM 5. If $Y \subseteq X$, then f_{X} Ind $Y \leq$ Ind $b Y$.
PROOF. Let Ind $b y=k$, for $k=-1$ the result is trivial. We assume its validity for $k \leq n-1$ and suppose that $k=n$.

Let F_{1} and F_{2} be (closed) subsets of Y such that $F_{1} f_{X} F_{2}$. Then $b F_{1}$ and $b F_{2}$ are disjoint closed subsets of $b Y$. Thus there exists a partition (L, V_{1}, V_{2}) between $b F_{1}$ and $b F_{2}$ in $b Y$ such that Ind $L \leq n-1$.
From lemma 1 the triple ($L \cap Y, V_{1} \cap Y, V_{2} \cap Y$) is a f_{X}-partition between F_{1} and F_{2} in Y. Since $b(L \cap Y) \subseteq L$, then by theoren 2.2.1 in [1],
Ind $b(L \cap Y) \leq$ Ind $L \leq n-1$, and hence by inductive assumption

Thus

$$
\begin{gathered}
f_{X} \text { Ind }(L \cap Y) \leq n-1 . \\
f_{X} \text { Ind } Y \leq n .
\end{gathered}
$$

COROLLARY. f_{X} Ind $X \leq$ Ind βX, for every Tychonoff shace X.
THEOREM 6. Ind $Y \leq f_{X}$ Ind Y for $Y \subseteq X$.
PROOF. It is easy to prove it by applying the induction with respect to f_{X} Ind Y, noting that

$$
\forall F \in \tau^{C}, X \notin F \text { iff }\{x\} f_{X} F .
$$

From theorems 5 and 6 we have
THEOREM 7. ind $X \leq f_{X}$ Ind $X \leq$ Ind βX for every Tychonoff space X.
THEOREM 8. If f_{X} Ind $X=0$, then Ind $\beta X=0$.
PROOF. Let F_{1} and F_{2} are disjoint closed subsets of βX. Then $F_{1} \cap X$ and $F_{2} \cap X$ are completely separated in X. Since f_{X} Ind $X=0$, there exists a $f_{X^{-}}$ partition (L, V_{1}, V_{2}) between $F_{1} \cap X$ and $F_{2} \cap X$ in X such that $L=\phi$. By lemma 2, ($b L, O_{V}, O_{V_{1}}$) is a partition in βX between F_{1} and F_{2}. Thus Ind $\beta X=0$.

From theorems 8 and 5 we have:
COROLLARY. 1. f_{X} Ind $X=0$ if and only if Ind $\beta X=0$.
From the above corollary, theorem 1_{t} in [5] and theorem 1.6.11 in [1] we have, COROLLARY 2. f_{X} Ind $X=0$ iff $\operatorname{dim} X=0$.

THEOREM 9. f_{X} Ind $X \leq n$ iff for every (closed) subset F of X and each open subset U of X such that $U \supseteq F$, there exists an open subset U^{*} of X such that

$$
U \supset U^{*} \frac{\rho_{f}}{f} F \text { and } f_{X} \text { Ind } \operatorname{Fr} U^{*} \leq n-1 \text {. }
$$

Proof. Let f_{X} Ind $X \leq n$. Consider a (closed) subset F of X and an open subset U of X with $U \underset{f_{X}}{\supset}$.

Since $F f_{X}(X \mid U)$, then there exists a f_{X}-partition $\left(L, V_{1}, V_{2}\right)$ in X between F and $X \mid U$ satisfying f_{X} Ind $L \leq n-1$.
Hence
and

$$
X \mid L=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\phi, \quad V_{1_{f_{X}}} F
$$

(1-vii), $U D_{f_{x}}$
Thus by proposition (1-viii), $U \underset{f_{x}}{\supset} X \mid V_{2} \supseteq V_{1} \underset{f_{x}}{ } F$. Since $\operatorname{Fr} V_{1} \subseteq\left(X \mid V_{1}\right) \cap\left(X \mid V_{2}\right)$ $=X \mid V_{1} \cup V_{2}=L$, then by theorem 4, f_{X} Ind $\mathbf{F r} V_{1} \leq f_{X}$ Ind $L \leq n-1$. So the set V_{1} is the required one.

Conversely, let (X, τ) be a Tychonoff space satisfying the conditions of the theorem, consider $F_{1}, F_{2} \subset X$ such that $F_{1} f_{X} F_{2}$.
By the definition of $\underset{f_{x}}{\supset}$ we have $X \mid F_{2} \underset{f_{x}}{\supset} F_{1}$.
From the given condition, there exists $U \varepsilon \tau$ such that $X \mid F_{2} \underset{f_{X}}{\supset} U \underset{f_{X}}{\supset} F_{1}$ and f_{X} Ind $\operatorname{Fr} U \leq n-1$.
Using proposition 1 it is easy to see that the triple ($\operatorname{Fr} U, U, X \mid \bar{U}$) is a $f_{X^{-}}$ partition between F_{1} and F_{2} in X. So that f_{X} Ind $X \leq n$.

COROLLARY. Let f_{X} Ind $X=n$, then for every $k=0,1,2, \cdots, n-1$, The space X contains a closed subspace Y_{k} such that f_{X} Ind $Y_{k}=K$.

PROOF. The proof of this corollary is similar to the proof of the theorem 1.5.1 in [1].

DEFINITION 4. A f_{X}-base for a Tychonoff space (X, τ) is a subfamily β of 2^{X} such that
$A_{1} f_{X} A_{2}$ implies the existence of $V_{1}, V_{2} \in \beta$ such that $V_{i} \supseteq A_{i}$ for $i=1,2$ and $V_{1} f_{X} V_{2}$.

LEMMA 3. A sub-family $\beta \subseteq 2^{X}$ is a f_{X}-base for a Tychonoff space (X, τ) if and only if

$$
\forall F \subseteq X, \quad \forall V \underset{t_{x}}{\supset} F \quad \exists L \in \beta \in V \underset{f_{x}}{\supset} L \supseteq F .
$$

PROOF. Let β be a f_{X}-base for (X, τ) and $F, V \subseteq X$ such that $V \underset{f_{X}}{\supset}$. Since $F f_{X}(X \mid V)$, then by proposition $(1-i)$, there exist $U_{1}, U_{2} \subseteq X$ such that

$$
U_{1} \supseteq F, U_{2} \supseteq X \mid V \text { and } U_{1} f_{X} U_{2}
$$

Since β is a f_{X}-base, there exist $L, L^{*} \varepsilon \beta$ such that

$$
\begin{aligned}
& L \supseteq U_{1}, L^{*} \supseteq U_{2} \text { and } L f_{X} L^{*} . \\
& L \supseteq C \supseteq F, L^{*} \supseteq U_{2} \supseteq X \mid V \\
& \quad f_{x} \\
& \quad X \mid L^{*} \supseteq L .
\end{aligned}
$$

and hence
and
From proposition (1-vii, viii) it follows that

$$
L \underset{f_{x}}{\supset} F, \quad V \underset{f_{x}}{\supset} X \mid L^{*} \text { and } X \mid L^{*} \underset{f_{x}}{\supset} L
$$

Thus

$$
V \stackrel{\rightharpoonup}{f_{x}} L \stackrel{F}{f_{x}} \underset{\sim}{x} .
$$

Conversely, let β be a sub-family of 2 such that $V \underset{f_{x}}{\supset} L \supseteq F$ whenever $V \underset{f_{x}}{\supset} F$. Assuming that $F_{1} f_{X} F_{2}$, we have $X \mid F_{2} \stackrel{\supset}{f_{X}} F_{1}$. Thus, there is $L \in \beta$ such that $X \mid F_{2} \stackrel{\rightharpoonup}{f_{x}} \stackrel{\rightharpoonup}{f_{x}} F_{1}$. Since $X \mid F_{2} \underset{f_{x}}{\supset} L$, then $X \mid L \stackrel{\stackrel{f_{x}}{\rightleftharpoons}}{f_{x}} F_{2}$ and there is $L^{*} \in \beta$ such that $X \mid L$ $\underset{f_{x}}{\perp} L^{*} \stackrel{2 f_{x}}{\stackrel{f_{x}}{L}} F_{2}{ }^{f_{x}}$

It is clear that $L f_{X} L^{*}$.
Thus β is a f_{X}-base for (X, τ).
From the above lemma and theorem 8 one can easily prove the following:
THEOREM 10. A space (X, τ) has f_{X} Ind $X \leq n$ iff it has a f_{X}-base β consisting of open sets such f_{X} Ind Fr $L \leq n-1$ for every $L \in \beta$.

LEMMA 4. Let (X, τ) be space and $Y \in \tau$. If f_{X} Ind $Y \leq n$ and $F_{1}, F_{2} \subseteq X$ such that $F_{1} f_{X} F_{2}$, then there exists a f_{X}-partition $\left(L, V_{1}, V_{2}\right)$ between F_{1} and F_{2} in X such that f_{X} Ind $L \cap Y \leq n-1$.

PROOF. Since $F_{1} f_{X} F_{2}$, then by proposition (1-i, ix) there exist $U_{1}, U_{2} \in \tau$ such
that $U_{i} \supset F_{i}$ and $U_{1} f_{X} U_{2}$. Hence $U_{1} \cap Y f_{X} \bar{U}_{2} \cap Y$. Thus there exists a $f_{X^{*}}$-partition $\left(L^{*}, \quad U_{1}^{*}, \quad U_{2}^{*}\right)$ between $\bar{U}_{1} \cap Y$ and $\bar{U}_{2} \cap Y$ in Y such that f_{X} Ind $L^{*} \leq n-1$.
Consider $V_{i}=U_{i} \cup U_{i}^{*}$ and $L=X \mid\left(V_{1} \cup V_{2}^{*}\right)$, then the triple $\left(L, V_{1}, V_{2}\right)$ is $f_{X^{-}}$ partition between F_{1} and F_{2} in X satisfying the condition $L \cap Y=L^{*}$.

Hence f_{X} Ind $L \cap Y \leq n-1$.

THEOREM 11. If $X=A \cup B$ and A is an open in X, then

$$
f_{X} \text { Ind } X \leq f_{X} \text { Ind } A+f_{X} \text { Ind } B+1
$$

PROOF. Taking lemma 4 into consideration the proof of this theorem is similar to the proof of theorem 2.2.5 in [1].

COROLLARY. If $X=Y \cup Z$ such that Y is closed, then

$$
f_{X} \text { Ind } X \leq f_{X} \text { Ind } Y+f_{X} \text { Ind } Z+1
$$

PROOF. Since $X=Y \cup Z=Y \cup(X \mid Y)$ and $(X \mid Y \subseteq Z$, theorem 11 implies.

$$
f_{X} \text { Ind } X=f_{X} \text { Ind } Y \cup(X \mid Y) \leq f_{X} \text { Ind } Y+f_{X} \text { Ind }(X \mid Y)+1
$$

From theorem 4 we have f_{X} Ind $(X \mid Y) \leq f_{X}$ Ind Z.
Hence

$$
f_{X} \text { Ind }(Y \cup Z) \leq f_{X} \text { Ind } Y+f_{X} \text { Ind } Z+1
$$

COROLLARY 2. If $X=Y \cup Z$ and $Y, Z \in C^{*}(X)$, then

$$
f_{X} \text { Ind }(Y \cup Z) \leq f_{Y} \text { Ind } Y+f_{Z} \text { Ind } Z+1
$$

COROLLARY 3. If $X=\bigcup_{i=1}^{n} Y_{i}, Y_{i} \in C^{*}(X)$ for $i=1,2, \cdots, n$ and $f_{Y i}$ Ind $Y_{i} \leq 0$, then f_{X} Ind $X \leq n$.

REFERENCES

[1] Engelking R., Dimension theory (Warszawa 1978).
[2] Kandil, A., On large inductive dimension of proximity space, Candian Journal of Math, XXV, 5 (1983).
[3] Naimpally, S. A, and Warrack, B. D., Proximity spaces, Cambridge University Press, 1970.
[4] Smirnov, Ju. M., On proximity spaces, Amer. Math. Soc. Transl. Ser. 2, 38 (1964), 4-35.
[5] Smirnov, Ju. M., On the dimension theory of proximity spaces, Amer. Math. Transl., Ser.2, 21, (1962), 1-20.

Department of Mathematics Faculty of Science King Abdulaziz University Jeddah, Saudi Arabia.

