ON THE LARGE INDUCTIVE DIMENSION OF TYCHONOFF SPACE ## By Ali Kandil & M.A. Ismail ### Introduction We introduce a large inductive dimension function, f_x Ind X for a Tychonoff space X. We extend some previous results, that are known for normal space to arbitrary Tychonoff space. Moreover we show that f_x Ind X=Ind X for any normal space X. So that the theory of f Ind of a Tychonoff spaces may be consider as an extension of the theory of Ind of normal spaces. In this paper all considered spaces are assumed to be Tychonoff. The family of all open (closed) subsets of a space X is denoted by $\tau(\tau^c)$. For $A \subseteq X$; O_A denotes the largest open subset of the Stone-cech compactification βX of X with the property that $O_A \cap X = A^0$. The closure of $A \subseteq X$ in βX will be denoted by bA, that is $bA = \overline{A}^{\beta X}$, and the boundary of A by \mathbf{Fr} A. #### 1. Preliminaries DEFINITION 1. (i) The subsets A_1 and A_2 of X are said to be completely separated in X, and we are write $A_1f_xA_2$, if and only if there exists a continuous function $f: X \longrightarrow I$ such that $f(A_1) = \{0\}$ and $f(A_2) = \{1\}$. - (ii) A subset A of X is called f_X -neighbourhood of $B \subseteq X$, in symbol $A \supseteq B$, if and only if B $f_X(X|A)$. - (iii) We say that $Y \subseteq X$ has the property C^* , denoting this by $Y \in C^*(X)$, if and only if every continuous function $f: Y \longrightarrow I$ can be continuously extended over X. Using that f_X is the finest proximity on a given space (X, τ) which is compatible with $\tau[2]$, [3] and [4], we deduce the following properties of f_X : PROPOSITION 1. Let A1, A2 and A are subsets of X, then: - $(i) \ A_1 f_X A_2 \Longrightarrow \exists B_1, \ B_2 \subseteq X \ni B_i \underset{f}{\subset} A_i \ and \ B_1 f_X B_2.$ - $(ii) \ A_1 f_X A_2 \Longleftrightarrow \overline{A}_1 f_X \overline{A}_2 \Longleftrightarrow b A_1 \cap b A_2 = \phi.$ - $(iii) \ A_1f_XA_2 {\Longrightarrow} \overline{A}_2 {\subseteq} X | A_1 \ \ \textit{and} \ \ A_2 {\subseteq} (X|A_1)^0.$ $$(iv)$$ $(X|A_1)f_X(X|A_2) \Longrightarrow O_{A_1} \cup O_{A_2} = \beta X$. (v) If X is normal, then $$A_1f_XA_2 \Longleftrightarrow \overline{A}_1 \cap \overline{A}_2 = \phi$$. $$(vi)$$ $A_1 \supseteq A_2 \Longrightarrow A_1 \supseteq A_2$. $$(viii)$$ $A_1 \supseteq A_2 = X | A_2 \supseteq X | A_1$. (ix) $$A_1 \supseteq A_2 \Longrightarrow A_1 \supseteq \overline{A}_2$$ and $A_1 \supseteq A_2$. $$(xi)$$ $A_1 \supseteq A_2 \Longrightarrow O_{A_1} \supseteq bA_2$. (xii) $$bA = \beta X | O_{(X|A)}$$. $$(xiii)$$ $O_A = O_{A^o}$ (xiv) $$bO_A = bA \ \forall \ A \subseteq \tau$$. $$(xv) \ O_{A_1 \cap A_2} = O_{A_1} \cap O_{A_2}$$ $$(xvi)$$ $O_{\bigcup A_{\lambda}} \supseteq \bigcup O_{A_{\lambda}}$. $$\begin{array}{ll} (xvii) \ \ If \ A_1 \cap A_2 = \emptyset \ \ and \ \ A_1, \ \ A_2 \in \tau, \ \ then \ O_{A_1} \cup O_{A2} = O_{A1 \cup A2}, \\ (xviii) \ \ \mathbf{Fr} \ \ O_A = b \ \mathbf{Fr} \ A \ \forall \ A \in \tau. \end{array}$$ $$(xix) \ \ If \ Y = C^{+}(X) \ \ and \ \ A_{1}, \ \ A_{2} \subseteq Y, \ \ then \ \ A_{1}f_{X}A_{2} \Longleftrightarrow A_{1}f_{Y}A_{2}.$$ (xx) If $$Y \in C^{+}(X)$$, then $bx = \beta Y$. DEFINITION 2. Let $Y \subseteq X$. The triple (L, V_1, V_2) , where V_1 and V_2 are disjoint open subsets of Y, is called f_Y -partition between A_1 , $A_2 \subseteq Y$ in Y if and only if $Y|L=V_1 \cup V_2$ and $A_i f_X(Y|V_i)$ for i=1, 2. The following lemma is obvious. LEMMA 1. Let $Y \subseteq X$ and F_1 , $F_2 \subseteq Y$ such that $F_1 f_X F_2$. If (L, V_1, V_2) is a partition between bF_1 and bF_2 in βX (in sense |1|), then $(L \cap Y, V_1 \cap Y, V_2 \cap Y)$ is a f_{Y} -partition between F_{1} and F_{2} in Y. LEMMA 2. Let F_1 , $F_2 \subseteq X$ and $F_1 f_X F_2$. If (L, V_1, V_2) is a f_X -partition between F_1 and F_2 in X, then (bL, O_{V_1} , O_{V_2}) is a partition between bF_1 and bF_{o} in βX . PROOF. From definition 2 we have; $$X|L=V_1 \cup V_2$$ and $V_1 \supseteq F_i$ for $i=1, 2$, Let $L_i = L \cup V_i$, then it is clear that $$\boldsymbol{L}_{i}{\rightleftharpoons}\boldsymbol{\tau}^{\boldsymbol{C}},\ \boldsymbol{F}_{1}\boldsymbol{f}_{X}\boldsymbol{F}_{2}\ \mathrm{and}\ \boldsymbol{L}_{2}\boldsymbol{f}_{X}\boldsymbol{L}_{1}.$$ Hence $bL_1 \cap bF_2 = bL_2 \cap bF_1 = \phi$, by proposition (1-ii). Using proposition (1-xii) we have $$bF_1 \subseteq \beta X | bL_2 = O_{X|L_1} = O_{V_1}$$ and $bF_2 \subseteq \beta X | bL_1 = O_{X|L_2} = O_{V_3}$. Since $V_1 \cap V_2 = \phi$, proposition (1-xv) imply $$O_{V_1} \cap O_{V_2} = O_{V_1 \cap V_3} = \phi$$. Now $X|L=V_1 \cup V_2$, by proposition (1-xvii) we have; $$O_{X \mid L} = \beta X \mid bL = O_{V_1 \cup V_2} = O_{V_1} \cup O_{V_2}$$ Thus the triple (bL, O_V , O_V) is a partition between bF_1 and bF_2 in βX . # 2. The large inductive of Tychonoff space DEFINITION 3. Let (X, τ) be a Tychonoff space and $Y \subseteq X$. The f_X -large inductive dimension of Y, denoted by f_X Ind Y, is defined inductively as follows: f_X Ind Y=-1 iff $Y=\phi$. For a non-negative integer n, f_X Ind $Y\leq n$ means that for each pair of subsets F_1 and F_2 of Y, for which $F_1f_XF_2$, there exists a f_Y -partition $(L,\ V_1,\ V_2)$ between F_1 and F_2 in Y such that $$f_X \text{ Ind } L \leq n-1$$, $f_X \operatorname{Ind} Y = n \operatorname{iff} n - 1 < f_X \operatorname{Ind} Y \le n \operatorname{and}$ f_X Ind $Y=\infty$ iff there is no n for which f_X Ind $Y \le n$. Using proposition (i-v, xx) and the above definition, one may easily prove the following three theorems: THEOREM 1: If $Y = C^{\times}(X)$, then $f_X Ind Y = f_Y Ind Y$. THEOREM 2. If $Z \subseteq Y \subseteq X$ and $Y \in C^*(X)$, then f_X Ind $Z = f_Y$ Ind Z. THEOREM 3. If X is a normal space, then f_X Ind X = Ind X. THEOREM 4. If $Z \subseteq Y \subseteq X$, then f_X Ind $Z \leq f_X$ Ind Y. PROOF. Let f_X Ind Y=k. For k=-1 the result is trivial. We assume its validity for k < n and suppose k=n. Let F_1 , $F_2 \subseteq Z$ be suth that $F_1 f_X F_2$. Then there exists a f_X -partition (L, U_1 , U_2) between F_1 and F_2 in Y, for which f_X Ind $L \le n-1$. Evidently the triple ($L \cap Z$, $U_1 \cap Z$, $U_2 \cap Z$) is a f_X -partition between F_1 and F_2 in Z, and hence by inductive assumption, $$\begin{split} f_X \text{ Ind } (L \cap Z \leq & f_X \text{ Ind } L \leq n-1. \\ f_Y \text{Ind } Z \leq & f_Y \text{ Ind } Y. \end{split}$$ Thus COROLLARY 1. If $Y \subseteq X$, then f_X Ind $Y \leq f_X$ Ind X. COROLLARY 2. If $Y \in C^{+}(X)$, then f_{Y} Ind $Y \leq f_{X}$ Ind X. THEOREM 5. If $Y \subseteq X$, then f_X Ind $Y \le Ind$ bY. PROOF. Let Ind by=k, for k=-1 the result is trivial. We assume its validity for $k \le n-1$ and suppose that k=n. Let F_1 and F_2 be (closed) subsets of Y such that $F_1f_XF_2$. Then bF_1 and bF_2 are disjoint closed subsets of bY. Thus there exists a partition (L, V_1 , V_2) between bF_1 and bF_2 in bY such that Ind $L \le n-1$. From lemma 1 the triple $(L \cap Y, V_1 \cap Y, V_2 \cap Y)$ is a f_X -partition between F_1 and F_2 in Y. Since $b(L \cap Y) \subseteq L$, then by theoren 2.2.1 in [1], Ind $b(L \cap Y) \leq \text{Ind } L \leq n-1$, and hence by inductive assumption $$f_X \text{ Ind } (L \cap Y) \leq n-1.$$ $f_Y \text{ Ind } Y \leq n.$ Thus COROLLARY, f_X Ind $X \leq Ind \beta X$, for every Tychonoff shace X. THEOREM 6. Ind $Y \leq f_X$ Ind Y for $Y \subseteq X$. PROOF. It is easy to prove it by applying the induction with respect to f_X Ind Y, noting that $$\forall F \in \tau^C$$, $X \notin F$ iff $\{x\}$ $f_X F$. From theorems 5 and 6 we have THEOREM 7. ind $X \le f_X$ Ind $X \le I$ nd βX for every Tychonoff space X. THEOREM 8. If f_X Ind X=0, then Ind $\beta X=0$. PROOF. Let F_1 and F_2 are disjoint closed subsets of βX . Then $F_1 \cap X$ and $F_2 \cap X$ are completely separated in X. Since f_X Ind X=0, there exists a f_X -partition $(L,\ V_1,\ V_2)$ between $F_1 \cap X$ and $F_2 \cap X$ in X such that $L=\phi$. By lemma 2, $(bL,\ O_{V_1},\ O_{V_1})$ is a partition in βX between F_1 and F_2 . Thus Ind $\beta X=0$. From theorems 8 and 5 we have: COROLLARY. 1. f_X Ind X=0 if and only if Ind $\beta X=0$. From the above corollary, theorem 1, in [5] and theorem 1.6.11 in [1] we have, COROLLARY 2. f_X Ind X=0 iff dim X=0. THEOREM 9. f_x Ind $X \le n$ iff for every (closed) subset F of X and each open subset U of X such that $U \supseteq F$, there exists an open subset U^{\times} of X such that $U \supseteq U \stackrel{*f}{=} F$ and f_X Ind Fr $U \stackrel{*}{=} (n-1)$. PROOF. Let f_X Ind $X \le n$. Consider a (closed) subset F of X and an open subset U of X with $U \supseteq F$. Since $Ff_X(X|U)$, then there exists a f_X -partition (L, V_1, V_2) in X between F and X|U satisfying f_X Ind $L \le n-1$. Hence and $V_2 = X \mid U.$ Thus by proposition (1-viii), $U = X \mid V_2 = V_1 = F$. Since $\operatorname{Fr} V_1 = (X \mid V_1) \cap (X \mid V_2) = X \mid V_1 \cup V_2 = L$, then by theorem 4, f_X Ind $\operatorname{Fr} V_1 \leq f_X$ Ind $L \leq n-1$. So the set V, is the required one. Conversely, let (X, τ) be a Tychonoff space satisfying the conditions of the theorem, consider F_1 , $F_2 \subset X$ such that $F_1 f_X F_2$. By the definition of \supseteq we have $X|F_2 \supseteq F_1$. From the given condition, there exists $U \epsilon \tau$ such that $X | F_2 = U = F_1$ and f_X Ind Fr $U \leq n-1$. Using proposition 1 it is easy to see that the triple (Fr U, U, $X|\overline{U}$) is a $f_{X^{-}}$ partition between F_1 and F_2 in X. So that f_X Ind $X \le n$. COROLLARY. Let f_X Ind X=n, then for every $k=0, 1, 2, \dots, n-1$, The space X contains a closed subspace Y_k such that f_X Ind $Y_k = K$. PROOF. The proof of this corollary is similar to the proof of the theorem 1.5.1 in [1]. DEFINITION 4. A f_x -base for a Tychonoff space (X, τ) is a subfamily β of 2X such that $A_1 f_X A_2$ implies the existence of V_1 , $V_2 \subseteq \beta$ such that $V_i \supseteq A_i$ for i=1, 2 and $V_1 f_X V_2$ LEMMA 3. A sub-family $\beta \subseteq 2^X$ is a f_X -base for a Tychonoff space (X, τ) if and only if $$\forall F \subseteq X, \ \forall V \supseteq_{t_x} F \ \exists L \in \beta \in V \supseteq_{f_x} L \supseteq_{f_x} F.$$ PROOF. Let β be a f_X -base for (X,τ) and F, $V \subseteq X$ such that $V \supseteq F$. Since $Ff_X(X|V)$, then by proposition (1-i), there exist U_1 , $U_2 \subseteq X$ such that $$U_1 \supseteq F$$, $U_2 \supseteq X \mid V$ and $U_1 f_X U_2$. $$L \supseteq U_1$$, $L^* \supseteq U_2$ and $L f_X L^*$. and hence $$L \supseteq C \supseteq F, \ L^{+} \supseteq U_{2f_{x}} \supseteq X \mid V$$ $$X \mid L^{+} \supseteq L.$$ and From proposition (1-vii, viii) it follows that $$L \supseteq F$$, $V \supseteq X | L^{\times}$ and $X | L^{\times} \supseteq L$. $$V \supseteq L \supseteq F$$. Conversely, let β be a sub-family of 2^X such that $V \supseteq L \supseteq F$ whenever $V \supseteq F$. Assuming that $F_1 f_X F_2$, we have $X | F_2 \supseteq F_1$. Thus, there is $L \in \beta$ such that $X | F_2 \supseteq L \supseteq F_1$. Since $X | F_2 \supseteq L$, then $X | L \supseteq F_2$ and there is $L \not = \beta$ such that $X | L \supseteq L \not = F_2$. It is clear that $L f_X L \not = L =$ Thus β is a f_X -base for (X, τ) . From the above lemma and theorem 8 one can easily prove the following: THEOREM 10. A space (X, τ) has f_X Ind $X \le n$ iff it has a f_X -base β consisting of open sets such f_X Ind Fr $L \le n-1$ for every $L \in \beta$. LEMMA 4. Let (X, τ) be space and $Y \in \tau$. If f_X Ind $Y \leq n$ and F_1 , $F_2 \subseteq X$ such that $F_1f_XF_2$, then there exists a f_X -partition (L, V_1 , V_2) between F_1 and F_{o} in X such that f_{X} Ind $L \cap Y \leq n-1$. PROOF. Since $F_1f_XF_2$, then by proposition (1-i, ix) there exist U_1 , $U_2 = \tau$ such that $U_i = F_i$ and $U_1 f_X U_2$. Hence $U_1 \cap Y f_X \overline{U}_2 \cap Y$. Thus there exists a f_X -partition $(L^{\times}, \ U_1^{\times}, \ U_2^{\times})$ between $\overline{U}_1 \cap Y$ and $\overline{U}_2 \cap Y$ in Y such that f_X Ind $L^{\times} \leq n-1$. Consider $V_i = U_i \cup U_i^{\times}$ and $L = X | (V_1 \cup V_2^{\times})$, then the triple $(L, \ V_1, \ V_2)$ is f_X -partition between F_1 and F_2 in X satisfying the condition $L \cap Y = L^{\times}$. Hence f_X Ind $L \cap Y \leq n-1$. THEOREM 11. If $$X=A \cup B$$ and A is an open in X, then f_X Ind $X \le f_X$ Ind $A+f_X$ Ind $B+1$. PROOF. Taking lemma 4 into consideration the proof of this theorem is similar to the proof of theorem 2.2.5 in [1]. COROLLARY. If $$X=Y\cup Z$$ such that Y is closed, then f_X Ind $X\leq f_X$ Ind $Y+f_X$ Ind $Z+1$. PROOF. Since $X=Y\cup Z=Y\cup (X|Y)$ and $(X|Y\subseteq Z)$, theorem 11 implies. f_X Ind $X=f_X$ Ind $Y\cup (X|Y)\le f_X$ Ind $Y+f_X$ Ind (X|Y)+1 From theorem 4 we have f_X Ind $(X|Y)\le f_X$ Ind Z. Hence f_X Ind $(Y\cup Z)\le f_X$ Ind $Y+f_X$ Ind Z+1. COROLLARY 2. If $$X=Y\cup Z$$ and $Y,Z\in C^*(X)$, then f_X Ind $(Y\cup Z)\leq f_Y$ Ind $Y+f_Z$ Ind $Z+1$. COROLLARY 3. If $X = \bigcup_{i=1}^n Y_i$, $Y_i \in C^*(X)$ for $i=1, 2, \cdots$, n and f_{Y_i} Ind $Y_i \leq 0$, then f_{Y_i} Ind $X \leq n$. #### REFERENCES - [1] Engelking R., Dimension theory (Warszawa 1978). - [2] Kandil, A., On large inductive dimension of proximity space, Candian Journal of Math, XXV, 5 (1983). - [3] Naimpally, S. A, and Warrack, B.D., Proximity spaces, Cambridge University Press, 1970. - [4] Smirnov, Ju. M., On proximity spaces, Amer. Math. Soc. Transl. Ser. 2, 38 (1964), 4-35. [5] Smirnov, Ju. M., On the dimension theory of proximity spaces, Amer. Math. Transl., Ser. 2, 21, (1962), 1-20. > Department of Mathematics Faculty of Science King Abdulaziz University Jeddah, Saudi Arabia.