Kyungpook Math. J. Volume 28, Number 1 June, 1988

A NOTE ON H-SETS

By Mohan L. Tikoo

Abstract: The nature of a H-set in a Hausdorff space is not well understood. In this note it is shown that if X is a countable union of nowhere dense compact sets, then X is not H-embeddable in any Hausdorff space. An example is given to show that there exists a non-Urysohn, non-H-closed space X such that each H-set of X is compact.

Introduction.

All spaces under consideration are Hausdorff. Let X be a space, and A a subset of X, then $\operatorname{cl}_{Y}A$ denotes the closure of A in X, $\tau(X)$ denotes the topology and |X| denotes the cardinality of X. An open filter on X is a filter each of whose members is an open subset of X. If \mathscr{T} is a filter on X, then $\operatorname{ad}_X(\mathscr{F}) = \bigcap \{\operatorname{cl}_Y(F) : F \in \mathscr{F}\}$ is called the adherence of \mathcal{F} : \mathcal{F} is called free if $\operatorname{ad}_{Y}(\mathcal{F}) = \emptyset$. As pace X is called H-closed if X is closed in every space Z in which X is embedded. X is called *minimal* Hausdorff if X has no Hausdorff topology strictly coarser than $\tau(X)$. X is called Urysohn if any two distinct points of X are contained in disjoint closed neighborhoods. A subset A of a space X of a space X is θ -closed [6] if A= $x \in X$: every closed neighborhood of x meets A]. A subset A of a space X is called an *H*-set (see [4], [6]) if whenever $\mathscr{G} \subseteq \tau(X)$ is any covering of A then there exist finitely many $G_1, G_2, \dots, G_n \in \mathcal{G}$ such that $A \subseteq \bigcup_{i=1}^n \operatorname{cl}_X(G_i)$. Every Hclosed subset of a space X is an H-set in X and every H-set of X is closed, but the converse need not be true (see [4]). It can be easily shown that a regular closed subset A of a space X is H-closed if and only if A is an H-set. It is remarked in [7] that a subset $A \subseteq X$ is an H-set if and only if whenever \mathcal{F} is an open filter on X such that $A \cap F \neq \emptyset$ for each $F \in \mathscr{F}$, then $A \cap \operatorname{ad}_{Y}(\mathscr{F}) \neq \emptyset$. The nature of H-sets in a space is obscure and not well understood. In fact, H-sets behave mysteroiusly in a Hausdorff space. A space X is called C-compact [8] if every closed subset of X is a H-set. Katětov [3] proved that a space X is compact if and only if every closed subset of X is H-closed. Viglino [8]

gave an example of a noncompact space X such that every closed subset of X is a H-set. It is also proved in [8] that every compact space is C-compact and every C-compact space is minimal Hausdorff, and, moreover, for an Urysohn space all these three notions are equivalent. It is thus pertinent to give an example of a nonregular, non-Urysohn, non-H-closed space X such that each H-set in X is compact. Recall that a map $f: X \to Y$ is θ -continuous if for every x in X and every neighbourhood V of f(x), there exists an open neighbourhood U of x such that $f(cl_X(U)) \subseteq cl_Y(V)$. Two spaces X and Y are called θ -homeomorphic if there exists a bijection f from X onto Y such that f and f are both θ -continuous. We shall call a space X H-embeddable if X is a H-set in some Hausdorff space Y.

PROPOSITION 1. Let f be a θ -continuous map from a space X to a space Y. Then the following are true.

(a) (see[1]) If A is an H-set in X, then f(A) is an H-set in Y.

(b) If X is H-closed and Y is Urysohn and B is an H-set in Y, then $f^{-}(B)$ is an H-set in X.

PROOF. For (a) see [1; 2.5]. To prove (b), let *B* be an *H*-set in *Y*. Since *Y* is Urysohn, by [2; 2.8], *B* is θ -closed in *Y*. New let $x \in X \setminus f^-(B)$. Then $f(x) \notin B$ and there exists an open neighborhood *V* of f(x) in *Y* such that $\operatorname{cl}_Y(V) \cap B = \emptyset$. Since *f* is θ -continuous, there is an open neighborhood *U* of *x* in *X* such that $f(\operatorname{cl}_X(U)) \subseteq \operatorname{cl}_Y(V)$. Hence, $f(\operatorname{cl}_X(U)) \cap B = \emptyset$, so that $\operatorname{cl}_X(U) \cap f^-(B) = \emptyset$. Thus, $f \to (B)$ is θ -closed in *X* and hence an *H*-set in *X* (see [6].)

COROLLARY. If $f: X \rightarrow Y$ is a θ -homeomorphism, then A is an H-set in X if and only if f(A) is an H-set in Y.

PROPOSITION 2. If X is a countable union of compact nowhere dense sets, then X is not H-embeddable in any space.

PROOF. Suppose that X is a H-set in some Hausdorff space Y. Let $X = \bigcup_{n=0}^{\infty} A_n$, where each A_n is compact and nowhere dense in X. Then each A_n is compact in Y. Let $p_0 \in X \setminus A_0$. Since A_0 is compact, there exists an open neighborhood U_1 of p_0 in Y such that $\operatorname{cl}_Y(U_1) \cap A_0 = \emptyset$. Since A_1 is nowhere dense, $(U_1 \cap X) \setminus A_1 \neq \emptyset$. Let $p_1 \in (U_1 \cap X) \setminus A_1$. Since A_1 is compact, there is an open neighborhood U_2 of p_1 in Y with $U_2 \subseteq U_1$ and $\operatorname{cl}_Y(U_2) \subset A_1 = \emptyset$. Assume that we have chosen $U_1 \supseteq U_2$

A note on H-sets

 $\begin{array}{l} \supseteq \cdots \supseteq U_n \text{ such that } \operatorname{cl}_Y(U_n) \cap A_{n-1} = \emptyset \text{ and } U_n \cap X \neq \emptyset. \text{ Since } A_n \text{ is nowhere} \\ \operatorname{dense, } (U_n \cap X) \setminus A_n \neq \emptyset. \text{ Select } p_n \Subset (U_n \cap X) \setminus A_n. \text{ By compactness of } A_n \text{ we get an} \\ \operatorname{open neighborhood } U_{n+1} \text{ of } p_n \text{ in } Y \text{ with } U_{n+1} \boxdot U_n \text{ and } \operatorname{cl}_Y(U_{n+1}) \cap A_n = \emptyset. \text{ By} \\ \operatorname{induction, we obtain a chain of nonempty open subsets } U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots \inf Y \\ \operatorname{such that } \operatorname{cl}_Y(U_{n+1}) \cap A_n = \emptyset \text{ and } U_{n+1} \cap X \neq \emptyset \text{ for all } n = 0, 1, 2 \cdots \det \mathcal{F} \text{ be the} \\ \operatorname{open filter on } Y \text{ generated by the family } \{U_i : i = 1, 2, 3 \cdots \}. \text{ Then } F \cap X \neq \emptyset \text{ for all } F \Subset \mathcal{F}. \\ \operatorname{since } X \text{ is a } H \text{ -set in } Y, X \cap \cap \{\operatorname{cl}_Y(F) : F \Subset \mathcal{F}\} \neq \emptyset. \text{ But} \cap \{\operatorname{cl}_Y(F) : F \Subset \mathcal{F}\} = \bigcup_{n=1}^{\infty} [\operatorname{cl}_Y(U_n) : n = 1, 2, \cdots], \text{ and since}(\bigcup_{n=1}^{\infty} \operatorname{cl}_Y(U_n)) \cap A_m = \emptyset \text{ for all } m = 0, \\ 1, 2, \cdots , \text{ it follows that } X \cap (\bigcup_{n=1}^{\infty} \operatorname{cl}_Y(U_n)) = (\bigcup_{n=0}^{\infty} m) \cup (\bigcap_{n=1}^{\infty} \operatorname{cl}_Y(U_n)) = \emptyset, \text{ leading to} \\ \text{ a contradiction, and the proposition follows.} \end{array}$

COROLLARY. (a) [7; 3.3.13.] The space Q of rationals is not H-embeddable. (b) For any non-empty compact space $K, K \times Q$ is not H-embeddable. (c) Any countable space without isolated points is not H-embeddable.

The following example shows that there exists a non-regular, non-Urysohn, non-H-closed space X such that each H-set in X is compact. N will denote the set of positive integers.

EXAMPLE. Let $X = \{(1/n, 1/m) : n \in \mathbb{N}, |m| \in \mathbb{N}\} \cup$

 $\{1/n, 0\} : n \in \mathbb{N}\} \cup \{0, 1\}, (0, -1)\}$. Let $\mathscr{U} \in \beta \mathbb{N} \setminus \mathbb{N}$. Topologize X as follows: a set $U \subseteq X$ is open in X if and only if $U \cap \{X \setminus \{(0, 1), (0, -1)\}\}$ is open in the topology induced by the usual topology of the plane \mathbb{R}^2 and if $(0, 1) \in U$ (respectively, $(0, -1) \in U$) then there exists a set $K \in \mathscr{U}$ such that $\{(1/n, 1/m) : n \in K, m \in \mathbb{N}\} \subseteq U$ (respectively, $\{(1/n, -1/m) : n \in K, m \in \mathbb{N}\} \subseteq U$.)

Obviously, X is Hausdorff. Since (0,1) and (0,-1) cannot be separated by disjoint closed neighborhoods, X is not Urysohn, and hence, X is not regular. We show that each proper H-set of X is compact.

First note that each of the following subsets

$$\begin{split} &A_n = \{(1/n, 0)\} \cup \{(1/n, 1/m) : m \Subset N\}, \\ &B_n = \{(1/n, 0)\} \cup \{(1/n, -1/m) : m \Subset N\}, \text{ and } \\ &C_n = \{(1/n, 0)\} \cup \{(1/n, 1/m) : |m| \Subset N\} \end{split}$$

is a clopen and compact subset of X for each $n \in \mathbb{N}$. Also, each point of $X \setminus [\{(0,1), (0,-1)\} \cup \{(1/n,0) : n \in \mathbb{N}\}]$ is isolated in X. Now, let S be any proper H-set in X. We consider several cases.

Case(1). If $S \cap [\{(0,1), (0,-1)\} \cup \{(1/n,0) : n \in N\}\} = \emptyset$, then S must be finite

and hence compact.

Case(2). If $S = (_{i \in \bigcup I_{1}}A_{i}) \cup (_{j \in \bigcup I_{2}}B_{j}) \cup (_{k \in \bigcup I_{2}}C_{k})$, then $|I_{1}| + |I_{2}| + |I_{3}| < \aleph_{0}$. So, again, S is compact.

 $\begin{array}{l} Case(3). \ \mathrm{Let} \ S = \{(0,1)\} \cup \{(1/n,0): n \in P \subseteq N\}. \ \mathrm{If} \ P \notin \mathscr{U}, \ \mathrm{then} \ N \setminus P \in \mathscr{U}, \ \mathrm{since} \\ \mathscr{U} \ \mathrm{is} \ \mathrm{an} \ \mathrm{ultrafilter} \ \mathrm{on} \ N. \ \mathrm{Then} \ \{(0,1)\} \cup \{(1/n,1/m): n \in N \setminus P, \ m \in N\} \cup \bigcup A_p \ \mathrm{is} \\ \mathrm{an} \ \mathrm{open} \ \mathrm{cover} \ \mathrm{of} \ S. \ \mathrm{Since} \ \mathrm{each} \ A_p \ \mathrm{is} \ \mathrm{clopen}, \ \mathrm{then} \ S \ \mathrm{being} \ \mathrm{a} \ H - \mathrm{set} \ \mathrm{forces} \ \mathrm{the} \\ \mathrm{conclusion} \ \mathrm{that} \ |P| < \aleph_0. \ \mathrm{So}, \ S \ \mathrm{is} \ \mathrm{compact}. \ \mathrm{Now}, \ \mathrm{if} \ P \in \mathscr{U}, \ \mathrm{and} \ P \ \mathrm{is} \ \mathrm{infinite}, \\ \mathrm{let} \ P = P_1 \cup P_2, \ \mathrm{where} \ \mathrm{both} \ P_1 \ \mathrm{and} \ P_2 \ \mathrm{and} \ \mathrm{infinite} \ \mathrm{and} \ P_1 \cap P_2 = \emptyset. \ \mathrm{Now} \ \mathrm{either} \\ P_1 \in \mathscr{U} \ \mathrm{or} \ P_2 \in \mathscr{U}. \ \mathrm{Assume} \ \mathrm{that} \ P_1 \in \mathscr{U}. \ \mathrm{Then} \ (0,1) \cup \{1/n, 1/m\}: n \in P_1, \ m \in N\} \\ \cup \bigcup A_p \ \mathrm{is} \ \mathrm{an} \ \mathrm{open} \ \mathrm{cover} \ \mathrm{of} \ S. \ \mathrm{Since} \ S \ \mathrm{is} \ \mathrm{a} \ H - \mathrm{set}, \ \mathrm{and} \ \mathrm{since} \ \mathrm{cl}_X[\{(0,1)\} \cup \{(1/n, n \in N)\}] \ \mathrm{indep} \ \mathrm{ext} \ \mathrm{open} \ \mathrm{ext} \ \mathrm{e$

Case(4). The case when $S = \{(0, -1)\} \cup \{(1/n, 0) : n \in P \subseteq N\}$ is handled in the same manner as case(3), and a similar argument then shows that if $S = \{(0, 1), (0, -1)\} \cap \{(1/n, 0) : n \in P \subseteq N\}$ is a *H*-set, then $|P| < \aleph_0$ and *S* is compact.

Case(5). Let $S = \{(0,1)\} \cup \{(1/n,0) : n \in P \subseteq N\} \cup \bigcup A_q$. We show that if S is a *H*-set, then both P and Q are finite. Assume that P is infinite. If $P \notin \mathscr{U}$ then $N \setminus P \in \mathscr{U}$. So, $\{\{(0,1)\} \cup \{(1/n,1/m) : n \in N \setminus P, m \in N\}\} \cup \bigcup A_p \cup \bigcup A_q$ is an open cover of S which does not contain any finite subfamily whose closures cover S (since A_p 's are clopen), contradicting the fact that S is a *H*-set. If $P \in \mathscr{U}$, we let $P = P_1 \cup P_2$ as in case(3), and using the same arguments as in case(3) we finally conclude that P is not infinite. Now assume that Q is infinite. If $Q \in \mathscr{U}$ then $N \setminus Q \in \mathscr{U}$. So, $\{\{(0,1)\} \cup \{(1/n, 1/m) : n \in N \setminus Q, m \in N\}\} \cup \bigcup A_r \cup \bigcup A_r \cup \bigcup A_p$ is an open cover of S which does not contain any finite subfamily whose closures covers cover S, contradicting the hypothesis that S is an *H*-set. If $Q \in \mathscr{U}$, we decompose $Q = Q_1 \cup Q_2$ as a disjoint union of two infinite. Thut both P and Q are finite and, hence, S is compact.

A similar reasoning leads to the same conclusion if S contains (0, -1) and/or $\bigcup_{r \in \mathbb{R}} B_r$ (respectively, $\bigcup_{d \in D} C_d$). The most general case now follows by taking combinations of the cases (1) through (5).

In the above example it is easy to see that if H_1 and H_2 are two disjoint Hsets in X, then there exist two disjoint open subsets U_1 and U_2 of X containing H_1 and H_2 respectively and such that $\operatorname{cl}_X(U_1) \cap \operatorname{cl}_X(U_2) = \emptyset$. Moreover, the topology of X contains a coarser H-closed topology τ' , where, a subset U of X is in τ' provided that $U \setminus \{(0, 1), (0, -1)\}$ is open in the usual topology of R_2 and if $(0, 1) \in U$ (respectively, $(0, -1) \in U$) then there ewists $n_0 \in N$ such that $\{(1/n, 1/m) : n \ge n_0, m \in N\} \subseteq U$ (respectively, $\{(1/n, -1/m) : n \ge n_0, m \in N \subseteq U\}$). The space (X, τ') was first defined by Urysohn [5].

REFERENCES

- R.F. Dickman, Jr. and Jack R. Porter, θ-closed subsets of Hausdorff spaces, Pacific J. Math. 59: 2(1975), 407-415.
- [2] _____, θ-perfect and θ-absolutely closed functions, Illinois J. Math., 21(1977), 42-60.
- [3] M. Katětov, Uber H-abgeschlossene und bicompact Raume, Casopis Pest., Math.. Fys., 69(1940), 36-49.
- [4] J. Porter and J. Thomas, On H-closed spaces and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138(1969), 159-170.
- [5] P. Urysohn, Uber die Machtigkeit der zusammenhangen Mengen. Math., Ann. 94 (1925), 262-295.
- [6] N.V. Velico, H-closed topological, Amer. Math. Soc. Transl. 78(1969), 103-118.
- [7] J. Vermeer, Ezpansions of H-closed spaces, Dissertation, Vrije Universiteitte Amsterdam, 1983.
- [8] G. Viglino, C-compact spaces, Duke Math. J. 36(1969), 761-764.

Department of Mathematics, Southeast Missouri State University, Cape Girardeau, Missouri 63701, U.S.A.