ON A NOTION OF PAIRWISE FUNCTIONAL COMPACTNESS IN BITOPOLOGICAL SPACES

By Angelo Bella and Giovanni Gallo

Abstract: In this paper we give a notion of pairwise functional compactness in bitopological spaces. We characterize this class of spaces in terms of continuous functions and covers. Also, a characterization in terms of multifuncions is stated.

Introduction

Functionally compact Hausdorff spaces were introduced by Dick mann and Zame in 1969 ([2]). These spaces are between C-compact spaces, introduced by G. Viglino in 1969, and the well known minimal Hausdorff spaces. Bitopological versions of the two classes of spaces above have just been given and studied in [4], [6], [7]. In this paper we introduce the notion of pairwise functionally compact bitopological spaces. We characterize this class of space by covers and prove that it is between the class of pairwise C-compact spaces, in the sense of Swart, and the class of minimal pairwise Hausdorff spaces.

One of the most interesting results obtained by Dickmann and Zame is the following: A Hausdorff spaces X is functionally compact if and only if every continuous mapping from X into a Hausdorff space is closed. At the end of section 2 we prove that our spaces have a similar property (see Theorem 2.2). In section 3 we give some theorems relating pairwise functionally compact bitopological spaces and multifunctions, in particular a generalization of Theorem 2.2 in terms of multifunctions is stated.

1. Preliminaries

For general definitions and properties about bitopological spaces, we refer to [3]. In the text, if (X, τ_1, τ_2) is a bitopological space, \inf_{τ_i} (resp. $\operatorname{cl}_{\tau_i}$) denotes the interior (resp. closure) taken with respect to τ_i , i=1, 2.

We only recall the following

DEFINITION 1.1. A bitopological space $(X, \ \tau_1, \ \tau_2)$ is said to be pairwise Hausdorff if for every pair of points $x, \ y{\in}X, \ x{\neq}y$ there exists a τ_i -open set V and a τ_j -open set V satisfying $x{\in}U, \ y{\in}V, \ U\cap V=\emptyset$ for $i{\neq}j, \ i, \ j{=}1, \ 2.$

Althought there exist two different notions ([6], [7]) of pairwise C-compactness in bitopological spaces, we use the following due to [6].

DEFINITION 1.2. A bitopological space (X, τ_1, τ_2) is said to be pairwise C-compact if for every τ_i -closed set $C \subseteq X$ and for every τ_j -open cover $\mathscr U$ of C there exists a finite subfamily $\{U_1, \cdots, U_n\}$ of $\mathscr U$ such that $C \subseteq \operatorname{Cl}_{\tau_i} U_1 \cup \cdots \cup \operatorname{Cl}_{\tau_i} U_n$, $i \neq j, i, j = 1, 2$.

DEFINITION 1.3 [4]. A bitopological space (X, τ_1, τ_2) is said to be minimal pairwise Hausdorff if it is pairwise Hausdorff if it is pairwise Hausdorff and if (X, ϕ_1, ϕ_2) is pairwise Hausdorff with $\phi_1 \subset \tau_1, \phi_2 \subset \tau_2$ then $\phi_1 = \tau_1$ and $\phi_2 = \tau_2$.

2. Main results

The notion of functionally compact spaces introduced in 1969 by Dickman and Zame [2] is:

DEFINITION 2.1. A Hausdorff topological space X is called functionally compact if, whenever \mathcal{U} is an open filter base on X such that the intersection A of the elements of \mathcal{U} is equal to the intersection of the closures of the elements of \mathcal{U} , then \mathcal{U} is a base for the neighborhoods of A.

Our purpose is to give a notion of pairwise functional compactness in such way that the class of pairwise functionally compact Hausdorff bitopological spaces is between the class of pairwise C-compact Hausdorff bitopological spaces and the class of minimal pairwise Hausdorff bitopological spaces.

DEFINITION 2.2 Let (X, τ_1, τ_2) a bitopological space. A subset $C \subseteq X$ is said to be θ -closed if for every $x \in X - C$ there exists a τ_i -open set U such that $x \in U$ and $\operatorname{Cl}_{\tau_i} U \cap C = \emptyset$, $i \neq j$, i, j = 1, 2. A subset A is said to be θ -open if X - A is θ -closed.

We remark that the above definition is the natural extension to bitopological spaces of the notion of θ -closed set introduced by Velichko in 1968 [8].

DEFINITION 2.3. A pairwise Hausdorff bitopological space (X, τ_1, τ_2) is said to be pairwise functionally compact if for every τ_i -open filterbase \mathcal{U} , such that $A = \bigcap_{U \in \mathcal{U}} U = \bigcap_{i \in \mathcal{U}} Cl_{\tau_i} U$, $i \neq j$, i, j = 1, 2 and A is θ -closed, \mathcal{U} is a base for the τ_i -neighborhoods of A.

Now we give a characterization of pairwise functionally compact spaces in terms of covers.

THEOREM 2.1 A pairwise Hausdorff bitopological space $(X, \ \tau_1, \ \tau_2)$ is pairwise functionally compact if and only if for every τ_j -closed set $C \subseteq X$ and for every τ_i -open cover $\mathscr U$ such that $A = \bigcup_{U \in \mathscr U} U = \bigcup_{U \in \mathscr U} \operatorname{Cl}_{\tau_j} U$ and A is a θ -open set, there exist $U_1, \ \cdots, \ U_n$ in $\mathscr U$ such that $C \subseteq \operatorname{Cl}_{\tau_j} U_1 \cup \cdots \cup \operatorname{Cl}_{\tau_j} U_n, \ i \neq j, \ i, j = 1, 2.$

PROOF. Necessity. Let C be a τ_j -closed set and $\mathscr U$ a τ_i -open cover of C such that $\bigcup_{U \in \mathscr U} U = \bigcup_{U \in \mathscr U} \operatorname{Cl}_{\tau_j} U$ and this union is θ -open. The family of sets $\{X - (\operatorname{Cl}_{\tau_j} U) \mid U \in \mathscr U\}$ generates a τ_j -open filterbase $\mathscr G$. We have:

$$\begin{split} B &= \bigcap_{U \in \mathcal{U}} (X - \operatorname{Cl}_{\tau_j} U) \subseteq \bigcap_{U \in \mathcal{U}} \operatorname{Cl}_{\tau_j} (X - \operatorname{Cl}_{\tau_j} U) \\ &= \bigcap_{U \in \mathcal{U}} (X - \operatorname{int}_{\tau_i} \operatorname{Cl}_{\tau_j} U) \subseteq \bigcap_{U \in \mathcal{U}} (X - U) = X - \bigcup_{U \in \mathcal{U}} U \\ &= X - \bigcup_{U \in \mathcal{U}} \operatorname{Cl}_{\tau_j} U = \bigcap_{U \in \mathcal{U}} (X - \operatorname{Cl}_{\tau_j} U). \end{split}$$

This means that B is θ -closed, so $\mathscr G$ is a base for the τ_j -neighborhoods of B. Because $B \subseteq X - C$ and X - C is a τ_j -open there exist U_1 , ..., U_k of $\mathscr U$ such that:

$$X - C \supseteq \bigcap_{h=1}^{n} (X - \operatorname{Cl}_{\tau_{j}} U_{h}) = X - \bigcup_{h=1}^{n} \operatorname{Cl}_{\tau_{j}} U_{h}$$

then $C \subseteq \bigcup_{h=1}^{n} \operatorname{Cl}_{\tau_{j}} U_{h}$.

Sufficiency. Let $\mathscr U$ be a τ_i -open filterbase such that $\bigcap_{U \in \mathscr U} U = \bigcap_{\tau_i} \operatorname{Cl}_{\tau_i} U = A$ is θ -closed. Let V a τ_i -open set such that $V \supseteq A$. Consider the family $\mathscr G = \{X - \operatorname{Cl}_{\tau_i} U \mid U \in \mathscr U\}$ that is an τ_i -open cover of X - V. We have:

$$\bigcup_{U \in \mathcal{U}} (X - \operatorname{Cl}_{\tau_i} U) \subseteq \bigcup_{U \in \mathcal{U}} \operatorname{Cl}_{\tau_i} (X - \operatorname{Cl}_{\tau_j} U)$$

$$= \bigcup_{U \in \mathcal{U}} (X - \operatorname{int}_{\tau_i} \operatorname{Cl}_{\tau_j} U) \subseteq \bigcup_{U \in \mathcal{U}} (X - U) = \bigcup_{U \in \mathcal{U}} (X - \operatorname{Cl}_{\tau_j} U),$$

moreover

$$\bigcup_{U \in \mathcal{U}} (X - \operatorname{Cl}_{\tau_j} U) = X - A$$

is θ -open. Then there exist U_1 , ..., U_n in $\mathscr U$ such that:

$$X-V\!\!\subseteq\!\!\bigcup_{h=1}^n\!\operatorname{Cl}_{\tau_i}(X-\operatorname{Cl}_{\tau_j}U_h)\!=\!\bigcup_{h=1}^n(X-\operatorname{int}_{\tau_i}\!\operatorname{Cl}_{\tau_j}U)\!\subseteq\!\bigcup_{h=1}^n(X-U_h).$$

So
$$V \supseteq \bigcap_{h=1}^{n} U_{h}$$
.

By Theorem 2.1 and Definition 1.2 it follows:

COROLLARY 2.1. Every pairwise Hausdorff, pairwise C-compact bitopological space is functionally compact.

DEFINITION 2.4. A mapping $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be continuous (closed) if the induced mappings $f:(X, \tau_1) \to (Y, \sigma_1)$ and $f:(X, \tau_2) \to (X, \tau_1) \to (X, \tau_2)$ (Y, σ_0) are continuous (closed).

LEMMA 2.1. Let (X, τ_1 , τ_2) be a bitopological space and (Y, σ_1 , σ_2) a pairwise Hausdorff bitopological space. If $f: X \rightarrow Y$ is a continuous mapping then for every $y \in Y$ $f^{-1}(y)$ is θ -closed.

PROOF. It follows easily from definitions.

THEOREM 2.2. A pairwise Hausdorff bitopological space (X, τ_1, τ_2) is pairwise functionally compact if and only if for every pairwise Hausdorff bitopological space (Y, σ_1, σ_2) every $f: X \rightarrow Y$ continuous is closed.

PROOF. Necessity. Let C be a τ -closed set in X, and $y \notin f(C)$. Because Y is pairwise Hausdorff for every x in f(C) there exist a σ_i -open U_x and σ_i -open V_x such that $y \in U_x$, $x \in V_x$ and $U_x \cap V_x = \emptyset$. The family $G = \{f^{-1}(V_x) | x \neq y\}$ is a τ_j -open cover of C. The set $\bigcup_{x\neq y}^{\tau_j} f^{-1}(V_x) = X - f^{-1}(y)$ is θ -open by Lemma 2.1, moreover for every x in Y, $x\neq y$ is for continuity $\operatorname{Cl}_{\tau_i}(f^{-1}(V_x)) \subseteq f^{-1}(\operatorname{Cl}_{\sigma_i} V_x)$ and because $y \notin Cl_{\sigma}V_{x}$ results $\bigcup Cl_{\tau}(f^{-1}(V_{x})) = X - f^{-1}(y)$. Now by Theorem 2.1 it follows

 $C \subseteq \operatorname{Cl}_{\tau_i}(f^{-1}(V_{x_i})) \cup \cdots \cup \operatorname{Cl}_{\tau_i}(f^{-1}(V_{x_s}))$ for suitable $x_1, \dots, x_n \in Y, x_i \neq y, i = 1, \dots, n$. Then $f(C) \subseteq \operatorname{Cl}_{\sigma_i} V_{x_i} \cup \cdots \cup \operatorname{Cl}_{\sigma_i} V_{x_s}$. Consider $U = U_x \cap \cdots \cap U_x$. We have $U \cap f(C) = \emptyset$ and $y \in U$ so f(C) is closed.

Sufficiency. Let X be a pairwise Hausdorff bitopological space such that every continuous mapping in every pairwise Hausdorff bitopological space is closed. Let $\mathscr U$ be a τ_i -open filterbase such that $\bigcap_{U = \mathscr U} U = \bigcap_{\tau_i} Cl_{\tau_i} U = A$ is θ -closed. Define on X the partition $X = A \bigcup_{x \in A} \{x\}$. Let Y the quotient space with respect to induced equivalence relation and $\pi: X \rightarrow Y$ the canonical mapping. Topologize Y as follows: system of neighborhoods for $\Pi(A)$ in σ_i is $\{\pi(U) | U \in \mathcal{U}\}$ and for

 $x \not\equiv A$ is $\{\pi(V) \mid V \ \tau_i$ -neighborhoods of $x\}$; system of neighborhoods for $\pi(A)$ in σ_j is $\{\pi(W) \mid W \ \text{is } \tau_j$ -open and $A \subseteq W\}$ and for $x \not\equiv A$ is $\{\pi(W) \mid W \ \tau_j$ -neighborhoods of $x\}$. Because A is θ -closed, it is easy to verify that Y is pairwise Hausdorff, moreover the canonical mapping is continuous then closed. Let Z a τ_i -neighborhood of A, because π is closed there exists a σ_i -neighborhood V of $\pi(A)$ such that $\pi^{-1}(V) \subseteq Z$. Then there exists $U \in \mathcal{U}$ such that $\pi(U) \subseteq V$, therefore $U \subseteq Z$.

With a slight modification we can restate the above theorem as follows:

Theorem 2.2. A pairwise Hausdorff bitopological space (X, τ_1, τ_2) is pairwise functionally compact if and only if for every pairwise Hausdorff bitopological space (Y, σ_1, σ_2) every $f: X \rightarrow Y$ continuous and surjective is closed.

COROLLARY 2.2. If a pairwise Hausdorff bitopological space (X, τ_1, τ_2) is pairwise functionally compact, is minimal pairwise Hausdorff.

PROOF. If (X, σ_1, σ_2) is a pairwise Hausdorff bitopological space with $\sigma_i \subset \tau_i$ the identity map $i: (X, \tau_1, \tau_2) \to (X, \sigma_1, \sigma_2)$ is continuous, then closed. This means $\tau_1 = \sigma_1$ and $\tau_2 = \sigma_2$.

Theorem 2.3. Let (X, τ_1, τ_2) be a bitopological space that is pairwise Hausdorff and pairwise functionally compact. Let (Y, σ_1, σ_2) be a pairwise Hausdorff bitopological space. If $f: X \rightarrow Y$ is a continuous surjection then (Y, σ_1, σ_2) is pairwise functionally compact.

PROOF. It is enough to prove that every continuous function $g:Y\to Z$ with $(Z,\ \eta_1,\ \eta_2)$ pairwise Hausdorff bitopological space, is closed. If C is a σ_i -closed in Y, $f^{-1}(C)$ is a τ_i -closed in X. The mapping $g\circ f:X\to Z$ is continuous, then closed, so:

$$g(C) = g \circ f(f^{-1}(C))$$

is a η_i -closed set in Z.

3. Pairwise functionally compact spaces and multifunctions

In this section we extend some results on multifunctions and functionally compact spaces given in [1]. Our purpose is to give a generalization of Theorem 2.2 to multifunctions.

For notations and general informations on multifunctions see [5].

DEFINITION 3.1 A multifunction $\varphi:(X,\ \tau_1,\ \tau_2){\to}(Y,\ \sigma_1,\ \sigma_2)$ is said to be open (resp. closed), lower semicontinuous (resp. upper) or continuous if the induced multifunction $\varphi:(X,\ \tau_1){\to}(Y,\ \sigma_1),\ \varphi:(X,\ \tau_2){\to}(Y,\ \sigma_2)$ are open (resp. closed), lower semicontinuous (resp. upper) or continuous.

THEOREM 3.1. Let (Y, σ_1, σ_2) be a pairwise Hausdorff bitopological space. Y is pairwise functionally compact if and only if for every pairwise Hausdorff bitopological space (X, τ_1, τ_2) every open, θ -closed valued multifunction $\varphi: X \to Y$, such that for every $x \in X$

$$\varphi(x) = \bigcap_{U \in B_i(x)} \operatorname{Cl}\tau_j \varphi(U),$$

is upper semicontinuous.

PROOF. Necessity. Let (Y, σ_1, σ_2) be pairwise functionally compact. For every fixed $x{\in}X$, because φ is open, the family $\{\varphi(U) | U{\in}B_i(x)\}$ is a σ_i -open filterbase. It is, from hypothesis:

$$\varphi(x) = \bigcap_{U \in B_i(x)} \varphi(U) = \bigcap_{U \in B_i(x)} \operatorname{Cl} \tau_j \varphi(U)$$

and $\varphi(x)$ is θ -closed. Then, from Definition 2.3, $\{\varphi(U)|U{\in}B_i(x)\}$ is a system of σ_i -neighborhoods of $\varphi(x)$. Thus for every σ_i -open V containing $\varphi(x)$ there exists $U{\in}B_i(x)$ such that $\varphi(U){\subseteq}V$, then φ is upper semicontinuous.

Sufficiency. It is enough to prove that every continuous function $f: Y \rightarrow X$ with (X, τ_1, τ_2) pairwise Hausdorff is closed. Without lost of generality we can suppose f surjective. Let $\varphi: X \rightarrow Y$ the multifunction defined with $\varphi = f^{-1}$. f is continuous, then from Lemma 2.1, φ is θ -closed valued and open, moreover, because (X, τ_1, τ_2) is pairwise Hausdorff, it is

$$\begin{split} \varphi(x) &\subseteq \bigcap_{U \in B_{i}(x)} \operatorname{Cl} \sigma_{j} \varphi(U) = \bigcap_{U \in B_{i}(x)} \operatorname{Cl} \sigma_{j} f^{-1}(U) \\ &\subseteq \bigcap_{U \in B_{j}(x)} f^{-1}(\operatorname{Cl} \tau_{j} U) = f^{-1} \bigcap_{U \in B_{i}(x)} \operatorname{Cl} \tau_{j}(U) = f^{-1}(x) = \varphi(w) \end{split}$$

then

$$\varphi(x) = \bigcap_{U \in B_i(x)} \operatorname{Cl}\sigma_j \varphi(U).$$

Thus φ is upper semicontinuous and f is closed.

REMARK. It is possible to give analogous results of Theorem 3.1 for pairwise C-compact space and minimal pairwise Hausdorff spaces.

THEOREM 3.2. Let (X, τ_1, τ_2) be a pairwise Hausdorff bitopological space and Let (Y, σ_1, σ^2) be a pairwise Hausdorff, pairwise functionally compact space then every open, closed, θ -closed valued multifunction φ with θ -closed fibres, $\varphi: X \rightarrow Y$, is upper semicontinuous.

PROOF. From Theorem 3.1 it is enough to show $\varphi(x) = \bigcap_{U \in B_i(x)} \operatorname{Cl}\sigma_j \varphi(U)$ for every x in X. It is always true that $\varphi(x) \subseteq \bigcap_{U \in B_i(x)} \operatorname{Cl}\sigma_j \phi(x)$, to prove the converse it is enough to show that: if $y \not\in \varphi(x)$ then there exists $U \in B_i(x)$ such that $y \not\in \operatorname{Cl}\sigma_j \varphi(U)$. If $y \not\in \varphi(x)$, $x \not\in \varphi^{-1}(y)$, but $\varphi^{-1}(y)$ is θ -closed then there exists $U \in B_i(x)$ such that $\operatorname{Cl}\tau_j U \cap \varphi^{-1}(y) = \emptyset$, then $y \not\in \varphi(\operatorname{Cl}\tau_j(U))$. Because φ is closed it is $\varphi(\operatorname{Cl}\tau_i(U)) \supseteq \operatorname{Cl}\sigma_i(\varphi(U))$ thus $y \not\in \operatorname{Cl}\sigma_j \varphi(U)$.

To obtain our final result we need the following extension of Lemma 2.1.

LEMMA 3.1. Let (X, τ_1, τ_2) , (Y, σ_1, σ_2) be bitopological spaces, Y is pairwise Hausdorff. If $\varphi: X \rightarrow Y$ is a continuous, θ -closed valued multifunction the $\varphi^{-1}(y)$ is θ -closed for every $y \in Y$.

PROOF. Let y be a point in Y and let x be a point in X such that $x \not\equiv \varphi^{-1}(y)$. $\varphi(x)$ is θ -closed then there exists $U \!\in\! B_i(y)$ such that $\operatorname{Cl} \sigma_j U \cap \varphi(x) = \emptyset$ thus $x \not\equiv \varphi^{-1}(\operatorname{Cl} \sigma_j(U))$. Because φ is continuous it is:

 $\varphi^{-1}(U) \subseteq \operatorname{Cl} \tau_j \varphi^{-1}(U) \subseteq \varphi^{-1}(\operatorname{Cl} \sigma_j(U)),$ moreover $\varphi^{-1}(y) \subseteq \varphi^{-1}(U)$. This proves the lemma.

Theorem 3.3 A pairwise Hausdorff bitopological space (X, τ_1, τ_2) is pairwise functionally compact if and only if for every pairwise Hausdorff bitopological space (Y, σ_1, σ_2) , every continuous, surjective, θ -closed valued multifunction $\varphi: X \rightarrow Y$ is closed.

PROOF. Necessity. Define $\phi: Y \to X$ with $\phi = \varphi^{-1}$. Because is surjective, continuous and θ -closed valued ϕ is well defined, open, with θ -closed fibres, moreover from Lemma 3.1 is θ -closed valued. Then from Theorem 3.2 ϕ is upper semicontinuous thus φ is closed.

Sufficiency. Let $f: X \rightarrow Y$ be a continuous, surjective function. f is θ -closed valued, because Y is pairwise Hausdorff. Then f is closed. From Theorem 2.2 follows that X is pairwise functionally compact.

REFERENCES

- A. Bella, A Note on functionally compact spaces, Proc. Amer. Math. Soc. 1986, to appear.
- [2] R.F. Dickman, A. Zame, Functionally compact spaces, Pac. J. of Math., 31(1969), 303-311.
- [3] J.C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
- [4] T.G. Raghavan and I.L. Reilly, On Minimal Bitopological Spaces, Kyungpook Math. J., 17, n.1(1977), 57-65.
- [5] R.E. Smithson, Multifunctions, Nieuw Arch. Wisk, (3) 20(1972), 31-53.
- [6] J. Swart, Pairwise C-compact spaces, Kyungpoook Math. J., 19 n.1 (1979), 33-38.
- [7] R. Vasudevan and C.K. Goel, A note on pairwise C-compact bitopological spaces, Mat. Bec., 1(14) (29), 1977, 179-187.
- [8] N.V. Velicko, H-closed topological spaces, Mat. Sb., 70(112) (1966), 98-112=Amer.
 Math. Soc. Transl. 78(2) (1968), 103-118.
- [9] G. Viglino, C-compact spaces, Duke J. Math., 36(1969), 761-764.

Dipartimento Di Matematica, Citta' Universitaria, Viale A. Doria 6, 95125 Catania, Italy