Kyungpook Math. J. Volume 28, Number 1 June, 1988

THE EQUIVALENCE OF COMPACTNESS AND PSEUDO-COMPACTNESS IN SOME FUNCTION SPACES

By John Atkins, Donald F. Reynolds and Michael Henry

Abstract: This paper investigates the relationship between compactness and pseudo-compactness in subsets of C(X) where X is locally compact and first countable. Two primary theorems are proven. First, equicontinuity at a point is proven to be equivalent to the existence of a certain open cover of a pseudo-compact subset of C(X). The second theorem proves the equivalence of compactness and pseudo-compctness for closed subsets F of C(X).

Introduction

Historically, much of the study of function spaces has focused on finding conditions which will assure that a given family of real-valued continuous functions be compact in the compact-open topology. This study has produced the classical Ascoli Theorem [4] and numerous generalizations, for example, [3, 4]. In this paper, we use the Ascoli Theorem to establish the equivalence of compactness and pseudocompactness in C(X) for a large class of domain spaces.

We first establish some notations and definitions.

All spaces X will be Hausdorff, and all functions will belong to C(X). The compact-open (respectively, pointwise) topology on C(X) will be denoted by $\tau_c(\text{resp.}, \tau_p)$ and the closure operator will be denoted by $\text{Cl}_C(\text{resp.}, \text{Cl}_p)$. A subbasic open set in τ_c will be denoted by (K, U). where $K \subset X$ is compact and $U \subset R$ is open.

If $x \in \mathbb{R}$, we denote by $B(x, \varepsilon)$ the open interval of radius $\varepsilon > 0$ about x. The rational numbers will be denoted by Q.

Ascoli's Theorem charaterizing compactness in C(X) involves the following notation:

DEFINITION: Let X be a topological space and let $x \in X$. Then $F \subset C(X)$ is equicontinuous at x if for every $\varepsilon > 0$, there is an open set $U \subset X$ containing x

such that $f(U) \subset B(f(x))$, ε) for all $f \in F$. Then F is equicontinuous if it is equicontinuous at each point of X.

In [5], Michael defined the concept of a cushioned refinement as follows:

DEFINITION. A collection $\{A_{\alpha} | \alpha \in \mathscr{A}\}$ is cushioned in $\{B_{\alpha} | \alpha \in \mathscr{A}\}$ if for each $\mathscr{B} \subset \mathscr{A}, \operatorname{Cl}(\bigcup \{A_{\beta} | \beta \in \mathscr{B}\}) \subset \bigcup \{B_{\beta} | \beta \in \mathscr{B}\}.$

Preliminary results

LEMMA 1. If $\varepsilon < \varepsilon'$, and K is compact, then $\{(K, B(q, \varepsilon)) | q \in Q\}$ is cushioned in $\{(K, B(q, \varepsilon')) | q \in \mathbb{Q}\}$.

PROOF. Assume not. Then there exists $P \subset Q$ and $f \in (C(X), \tau_{c})$ such that $f \in \operatorname{Cl}_{\mathcal{C}}(\bigcup \{(K, B(q, \varepsilon)) | q \in P\}) - \bigcup \{(K, B(q, \varepsilon') | q \in P\}.$

Let $\{f_{\alpha}\}$ be a net in $\bigcup \{(K, B(q, \varepsilon') | q \in P\}$ which converges to f. Set $\varepsilon_0 =$ $\varepsilon' - \varepsilon > 0$. Since $\{f_{\alpha}\} \to f$, there exists α such that $F_{\alpha} \in (K, \bigcup [B(f(x), \varepsilon)] x \in \mathbb{R})$ K}). Thus, for each $x \in K$, $-\varepsilon < f(x) - f_{\alpha}(x) < \varepsilon$, or equivalently,

 $f_{\alpha_{e}}(x) - \varepsilon' + \varepsilon < f(x) < f_{\alpha_{e}}(x) + \varepsilon' - \varepsilon$ But since $\{f_{\alpha}\} \subset \bigcup \{K, B(q, \varepsilon)\} | q \in P\}$, there exists $q_{\circ} \in P$ such that $f_{\alpha_{\circ}} \in (K, B)$ (q, ε)). Thus for all $x \in K$, $q - \varepsilon < f_{\alpha}(x) < q + \varepsilon$. Then by (1), we have for all $x \in K$,

 $q_{_{_{o}}} - \varepsilon - \varepsilon' + \varepsilon < f(x) < q_{_{o}} + \varepsilon + \varepsilon' - \varepsilon, \text{ or } q_{_{o}} - \varepsilon' < f(x) < q_{_{o}} + \varepsilon'. \text{ Hence } f \in (K, B(q_{_{o}}, \varepsilon'))$ $\subset \bigcup \{(K, B(q, \varepsilon')) | q \in P\}, \text{ a contradiction.}$

To establish our main results, we will need two additional lemmas. The first is a well-known fact about $(C(X), \tau_c)$ and the second is a characterization of pseudocompactness in Tychonoff spaces due to Hewitt [2]. We record them here for future reference.

LEMMA 2. If $K \subset X$ is compact and $V \subset R$ is open, then $Cl_c(K, V) \subset (K, Cl(V))$.

LEMMA 3. A Tychonoff space X is pseudocompact if and only if for every decreasing sequence of non-empty open sets $\{U_n\}$ in $X, \cap Cl(U_n) \neq \emptyset$.

Principal results

The first result establishes that, under rather general conditions imposed on the domain space, equicontinuity at a point for a pseudocompact collection of

(1)

functions is equivalent to the existence of a particular τ_c -open cover of the collection.

THEOREM 1. Let X be a locally compact and first countable and let F be a pseudocompact subset of $((C(X), \tau_c)$. Then F is equicontinuous at x if and only if $\{(K_n, B(q, \varepsilon)) | n \in \mathbb{N}, q \in \mathbb{Q}\}$ is an open cover of F for each $\varepsilon > 0$, where $\{K_n\}$ is a neighborhood base of compact sets at x.

PROOF. Assume F is equicontinuous at x_n and let $\varepsilon > 0$ be given. Then there exists a compact neighborhood K_m of x_n such that $f(K_m) \subset B(f(x_n), \varepsilon/2)$ for all $f \in F$. Hence $\{(K_n, B(q, \varepsilon)) | n \in N, q \in O\}$ is an open cover of F.

Conversely, assume F is not equicontinuous at x. Then there exists $\varepsilon > 0$, functions $f_n \in F$, and points $x_n \in X$ such that, for each $n \in N$, $f_n(x_n) \notin B(f_n(x_n), \varepsilon)$. This implies that for each $q \in Q$, $f_n \notin (K_n, B(q, \varepsilon/2))$ for each n and hence $f_n \notin U$ $\{K_n, B(q, \varepsilon/2)) | q \in Q\}$. Now let $\varepsilon < \varepsilon/2$ and note that by Lemma 1, $f_n \notin Cl_c(U$ $\{K_n, B(q, \varepsilon)) | q \in Q\}$) for each n. Thus $f_n \in (F - Cl_c) \cup \{(K_n, B(q, \varepsilon)) | q \in Q\})$. Since F is pseudocompact and $\{F - Cl_c(\cup \{(K_n, B(q, \varepsilon)) | q \in Q\})\}$ is a decreasing sequence of open sets, we have by Lemma 3 that $\bigcap_n Cl_c(F - Cl_c(\cup \{(K_n, B(q, \varepsilon)) | q \in Q\})) \neq \emptyset$, and hence $\bigcap_n Cl_c(F - \cup \{(K_n, B(q, \varepsilon)) | q \in Q\}) \neq \emptyset$. By DeMorgan's Law, it follows that $\bigcap_n Cl_c(\cap \{F - (K_n, B(q, \varepsilon)) | q \in Q\}) \neq \emptyset$.

Thus
$$F \supset F - \bigcap_{n} \operatorname{Cl}_{c}(\cap \{F - (K_{n}, B(q, \varepsilon)) | q \in Q\})$$

$$= \bigcup_{n} (F - \operatorname{Cl}_{c}(\cap \{F - (K_{n}, B(q, \varepsilon)) | q \in Q\})$$

$$\supset \bigcup_{n} (F - n \{\operatorname{Cl}_{c}(F - (K_{n}, B(q, \varepsilon))) | q \in Q\})$$

$$= \bigcap_{n, q} (F - \operatorname{Cl}_{c}(F - (K_{n}, B(q, \varepsilon))))$$

$$= \bigcup_{n, q} (F - (F - (K_{n}, B(q, \varepsilon)))) = \bigcup_{n, q} (K_{n}, B(q, \varepsilon)).$$

Therefore, $\{(K_n, B(q, \varepsilon)) | n \in \mathbb{N}, q \in \mathbb{Q}\}$ is not an open cover of F.

Our final theorem establishes that, assuming the same conditions on the domain space, for closed subspaces of C(X) with the compact-open topology, compactness and pseudocompactness are equivalent.

THEOREM 2. Let X be a locally compact and first countable and let F be a closed subset of $(C(X), \tau_{c})$. Then F is compact if and only if it is pseudocompact.

PROOF. We need only show that if F is pseudocomapct, it satisfies the three

conditions of Ascoli's Theorem (Kelley, p.233), from which compactness follows.

We first establish that F is equicontinuous. Let $x \in X$ and let $\{K_n\}$ be a neighborhood base of compact sets at x. Given $\varepsilon > 0$, for each $f \in F$, there must exist $q \in Q$ such that $f(x) \in B(q, \varepsilon)$. Thus the collection $\{(K_n, B(q, \varepsilon)) | n \in N, q \in Q\}$ is a τ_{-} -open cover of F. Equicontinuity follows from Theorem 1.

Since F is equicontinuous on X, so is $\operatorname{Cl}_p(F)$ by [Kelley, p.232]. Note that $\operatorname{Cl}_c(F) \subset \operatorname{Cl}_p(F)$, but since $\operatorname{Cl}_p(F)$ is an equicontinuous family, the topologies τ_c and τ_p coincide on this set [Kelley, p.232], so $\operatorname{Cl}_c(F) = \operatorname{Cl}_p(F)$. But $\operatorname{Cl}_c(F) = F$ by hypothesis, Thus F is pointwise closed.

Finally, we must establish that for each $x \in X$, $\operatorname{Cl}(\{f(x) | f \in F\})$ is compact in R. Suppose there exists $x \in X$ such that $\operatorname{Cl}(\{f(x) | f \in F\})$ is not compact. Then there is a sequence of functions $\{f_n\} \subset F$ such that $\{f_n(x_0) | n \in N\}$ is unbounded, say unbounded above without loss of generality. Select a subsequence $\{f_k\}$ of $\{f_n\}$ having the property that $f_k(x_0) > k$ for each $k \in N$. Now consider the neighborhood $V_k = (\{x_0\}, (k, +\infty))$ of f_k for each k. Each V_k is a non-empty open set in the pseudocompact space (F, τ_c) , but $\bigcap \{\operatorname{Cl}_c(V_k) | k \in N\} \subset \bigcap \{(\{x_0\}, (k, +\infty)) | k \in N\} = \emptyset$, which contradicts Lemma 3. Thus $\{f(x) | f \in F\}$ has compact closure for each $x \in X$. This completes the proof of the theorem.

REFERENCES

- D. Gale, Compact Sets of Functions and Function Rings, Proc. Amer. Math. Soc. 1 (1950), 303-308.
- [2] E. Hewitt, Rings of Real-valued Continuous Functions I, Trans. Amer. Math. Soc. 64, (1948), 45-99.
- [3] S.K. Kaul, Compact Subsets in Function Spaces, Canad. Math. Bull. 12, (1969), 461-466.
- [4] J.L. Kelley, General Topology, Van Nostrand, Princeton, N.J., 1955.
- [5] E. Michael, Yet Another Note on Paracompact Spaces, Proc. Amer. Soc. 10, (1959), 309-314.
- [6] J.S. Yang, Property (G), Regularity, and Semi-equicontinuity, Canad. Math. Bull 16, (1973), 587-594.

West Virginia University Indiana State University