Kyungpook Math. J. Volume 28, Number 1 June, 1988

ALMOST α -CONTINUOUS FUNCTIONS

By Takashi Noiri

1. Introduction

In 1968, Singal and Singal [14] introduced the notion of almost-continuous functions. Recently, Mashhour et. al. [8] have defined and investigated a new class of functions called α -continuous functions. These functions have been further investigated by Reilly and Vamanamurthy [13] and the present author [11]. On the other hand, Maheshwari et. al. [6] introduced the concept of almost feebly continuous functions.

The purpose of the present paper is to introduce the concept of almost α -continuity in topological spaces as a generalization of α -continuity and almost-continuity. In Section 3, we obtain several characterizations of almost α -continuous functions and show that almost α -continuity is equivalent to almost feeble continuity. In the last section, we obtain several properties of almost α -continuous functions and a characterization of α -irresolute functions due to Maheshwari and Thakur [5].

2. Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. Let S be a subset of (X, τ) . The closure of S and the interior of S are denoted by Cl(S) and Int (S), respectively. A subset S is said to be *regular open* (resp. *regular closed*) if Int (Cl(S))=S (resp. Cl(Int (S))=S). A subset S is said to be α -open [9] (resp. *semi-open* [4], *pre-open* [8]) if S \subset Int (Cl (Int(S))) (resp. S \subset Cl(Int(S)), S \subset Int(Cl(S))). The complement of an α -open (resp. semi-open) set is called α -closed (resp. *semi-closed*). The family of all α -open (resp. semi-open, pre-open) sets of (X, τ) is denoted by τ^{α} (resp. SO (X, τ) , PO(X, τ)). It is shown in [9] that τ^{α} is a topology for X and $\tau \subset \tau^{\alpha}$ \subset SO(X, τ). It is also shown in [11] that $\tau^{\alpha} =$ PO(X, τ) \cap SO(X, τ).

DEFINITION 2.1. A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be α -continuous [8]

if $f^{-1}(V) \equiv \tau^{\alpha}$ for every $V \equiv \sigma$.

DEFINITION 2.2 A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be *almost continuous* [14] if for each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $U \in \tau$ containing x such that $f(U) \subset Int(Cl(V))$.

REMARK 2.1. It is shown in [11] that α -continuity and almost-continuity are independent of each other.

DEFINITION 2.3. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be almost α -continuous (briefly a, α, c) if $f^{-1}(V) \in \tau^{\alpha}$ for every regular open set V of (Y, σ) .

REMARK 2.2. It is obvious that almost α -continuity is implied by α -continuity and almost-continuity. However, by Remark 2.1 the converses are not true in general.

DEFINITION 2.4. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be η -continuous [2] if every regular open sets U, V of (Y, σ) ,

(a) $f^{-1}(V) \subset \operatorname{Int}(\operatorname{Cl}(f^{-1}(V)))$ and

(b) $\operatorname{Int}(\operatorname{Cl}(f^{-1}(U \cap V))) = \operatorname{Int}(\operatorname{Cl}(f^{-1}(U))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(V))).$

REMARK 2.3. It is shown in [11] and [2] that both α -continuity and almostcontinuity imply η -continuity.

THEOREM 2.1. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is a. $\alpha. c.$, then it is η -continuous.

PROOF. Let U, V be any regular open sets of (Y, σ) . Since f is $a. \alpha. c.$, $f^{-1}(V) \in \tau^{\alpha} \subset PO(X, \tau)$ and hence $f^{-1}(V) \subset Int(Cl(f^{-1}(V)))$. Moreover, since $f^{-1}(V) \in \tau^{\alpha} \subset SO(X, \tau)$, by Lemma 3.5 of [11] we obtain (b) of Definition 2.4.

REMARK 2.4. The converse of of Theorem 2.1 is not true in general as the following example shows.

EXAMPLE 2.1. Let X = [a, b, c, d] and $\tau = [\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$. Let $Y = \{x, y, z\}$ and $\sigma = \{\emptyset, \{x\}, \{z\}, \{x, z\}, Y\}$. Define a function $f: (X, \tau) \rightarrow (Y, \sigma)$ as follows: f(a) = x, f(b) = f(c) = y and f(d) = Z. Then f is η -continuous but it is not $a. \alpha. c.$ since $\{x\}$ is regular open in (Y, σ) and $\{a\} \notin \tau^{\alpha}$. REMARK 2.5. We have the following relationships, however, by Remarks 2.1 and 2.4 none of these implications is reversible.

continuous almost-continuous $a. c. \longrightarrow \eta$ -continuous

3. Characterizations

Let S be a subset of a space (X, τ) . The intersection of all semi-closed sets containing S is called the *semi-closure* of S[1] and is denoted by sCl(S). A subset S is said to be *feebly open* [7] if there exists $U \equiv \tau$ such that $U \subseteq S \subseteq sCl(U)$. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be *almost feebly continuous* (resp. *feebly continuous*) [6] if $f^{-1}(V)$ is feebly open in (X, τ) for every regular open (resp. open) set V of (Y, σ) .

LEMMA 3.1. Let U be a subset of a space (X, τ) . Then $U \in PO(X, \tau)$ if and only if Int(Cl(U)) = sCl(U).

PROOF. Suppose that $U \in PO(X, \tau)$. It is shown that $Int(Cl(S)) \subset sCl(S)$ for every subset S of X [11, Lemma 4.14]. Let $x \notin Int(Cl(U))$. Then $x \in X$ -Int $(Cl(U)) \in SO(X, \tau)$ and $U \cap X$ -Int $(Cl(U))) = \emptyset$ since $U \in PO(X, \tau)$. This shows that $x \notin sCl(U)$. Therefore, we obtain sCl(U) = Int(Cl(U)). The converse is obvious since $S \subset sCl(S)$ for every subset S of X.

LEMMA 3.2. Let U be a subset of a space (X, τ) . Then $U \in \tau^{\alpha}$ if and only if U is feebly open in (X, τ) .

PROOF. It is shown in Lemma 4.12 of [11] that $U \in \tau^{\alpha}$ if and only if there exists $G \in \tau$ such that $G \subset U \subset Int(Cl(G))$. Therefore, Lemma 3.1 completes the proof.

THEOREM 3.1. A function $f: X \rightarrow Y$ is a. α . c. (resp. α -continuous) if and only if it is almost feebly continuous (resp. feebly continuous).

PROOF. This is an immediate consequence of Lemma 3.2.

THEOREM 3.2 For a function $f: (X, \tau) \rightarrow (Y, \sigma)$, the following are equivalent: (a) f is a. α . c.

(b) For each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $U \in \tau^{\alpha}$ containing

x such that $f(U) \subset Int(Cl(V))$.

(c) $f^{-1}(F)$ is α -closed in (X, τ) for every regular closed set F of (Y, σ) .

PROOF. This is obvious.

The topology having the regular open sets in (X, τ) as a basis is called the *semi-regularization* of τ and is denoted by τ_s .

THEOREM 3.3 For a function $f: (X, \tau) \rightarrow (Y, \sigma)$, the following are equivalent: (a) $f: (X, \tau) \rightarrow (Y, \sigma)$ is a. α . c. (b) $f: (X, \tau) \rightarrow (Y, \sigma_s)$ is α -continuous. (c) $f: (X, \tau^{\alpha}) \rightarrow (Y, \sigma)$ is almost-continuous. (d) $f: (X, \tau^{\alpha}) \rightarrow (Y, \sigma_s)$ is continuous.

PROOF. Every $V \equiv \sigma_S$ is the union of regular open sets of (Y, σ) . Therefore, (a) is equivalent to (b). It is obvious that (a), (c) and (d) are all equivalent.

4. Some properties

LEMMA 4.1. Let A be a subset of a space (X, τ) . If either $A \subseteq SO(X, \tau)$ or $A \subseteq PO(X, \tau)$, then $A \cap V$ is α -open in the subspace $(A, \tau/A)$ for every $V \in \tau^{\alpha}$.

PROOF. This follows from [13, Lemma 2] and [8, Lemma 1.1].

It is shown in [6, Proposition 4] that $f: X \rightarrow Y$ is almost feebly continuous and A is open in X then the restriction $f|A: A \rightarrow Y$ is almost feebly continuous. As an improvement of this result, we have the following.

THEOREM 4.1. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an $a.\alpha.c.$ function. If either $A \Subset SO$ (X, τ) or $A \Subset PO(X, \tau)$, then the restriction $f|A: (A, \tau/A) \rightarrow (Y, \sigma)$ is $a.\alpha.c.$

PROOF. Let V be a regular open set of (Y, σ) . Since f is a. $\alpha. c.$, $f^{-1}(V) \in \tau^{\alpha}$ and by Lemma 4.1 $f^{-1}(V) \cap A = (f|A)^{-1}(V) \in (\tau/A)^{\alpha}$. Therefore, f|A is a. $\alpha. c$.

In [3, Theorem 2.1] and [10, Corollary 4], it is shown that if $f: X \rightarrow Y$ is an almost-continuous injection and Y is Hausdorff then X is Hausdorff. The following theorem is a slight improvement of this result.

THEOREM 4.2. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is an a.a.c. injection and (Y, σ) is

74

Hausdorff, then (X, τ) is Hausdorff.

PROOF. Since f is $a.\alpha.c.$, by Theorem 3.3 $f:(X, \tau^{\alpha}) \rightarrow (Y, \sigma)$ is almostcontinuous. Since (Y, σ) is Hausdorff, so is (X, τ^{α}) [3, Theorem 2.1]. It follows from the proof of [11, Corollary 4.7] that (X, τ) is Hausdorff.

In [11, Theorem 4.9], the present author showed that if $f, g: X \to Y$ are α -continuous and Y is Hausdorff then $\{x \in X | f(x) = g(x)\}$ is α -closed in X. The following theorem shows that the assumption " α -continuous" in this result can be replaced by " $a. \alpha. c.$ "

THEOREM 4.3. If f, g: $(X, \tau) \rightarrow (Y, \sigma)$ are a. α . c. and (Y, σ) is Hausdorff, then $\{x \in X | f(x) = g(x)\}$ is α -closed in (X, τ) .

PROOF. Since f, $g:(X, \tau) \to (Y, \sigma)$ are $a.\alpha.c.$, by Theorem 3.3 f, $g:(X, \tau^{\alpha}) \to (Y, \sigma_{S})$ are continuous. Since (Y, σ_{S}) is Hausdorff, $\{x \in X | f(x) = g(x)\}$ is closed in (X, τ^{α}) and hence it is α -closed in (X, τ) .

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be *semi-weakly continuous* [12] if for each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $U \in SO(X, \tau)$ containing x such that $f(U) \subset sCl(V)$.

LEMMA 4.2. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is semi-weakly continuous if and only if $f^{-1}(V) \in SO(X, \tau)$ for every regular open set V of (Y, σ) .

PROOF. Necessity. Let V be a regular open ret of (Y, σ) . For each $x \in f^{-1}$ (V), there exists $U_X \in SO(X, \tau)$ containing x such that $f(U_X) \subset sCl(V)$. By lemma 3.1, we have sCl(V) = Int(Cl(V)) = V and hence $x \in U_X \subset f^{-1}(V)$. Therefore, it follows from Theorem 2 of [4] that $f^{-1}(V) \in SO(X, \tau)$.

Sufficiency. Let $x \in X$ and $f(x) \in V \in \sigma$. Put $U = f^{-1}$ (Int(Cl(V))), then $x \in U \in$ SO(X, τ) and $f(U) \subset Int(Cl(V)) = sCl(V)$ by Lemma 3.1. This shows that f is semi-weakly continuous.

REMARK 4.1. Semi-weak continuity and η -continuity are independent of each other. In Example 2.1, f is η -continuous but it is not semi-weakly continuous since $\{x\}$ is regular open in (Y, σ) and $\{a\} \notin SO(X, \tau)$. Moreover, a semiweakly continuous function is not necessarily η -continuous as the following example

shows.

EXAMPLE 4.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then the identity function $f: (X, \tau) \rightarrow (X, \sigma)$ is semi-weakly continuous. However, f is not η -continuous since $\{b, c\}$ is regular open in (X, σ) and $f^{-1}(\{b, c\})$ does not satisfy (a) of Definition 2.4.

THEOREM 4.4. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is a. α . c. if and only if and only if it is η -continuous and semi-weakly continuous.

PROOF. Necessity. Suppose that f is $a. \alpha. c$. By Theorem 2.1, f is η -continuous. Since $\tau^{\alpha} \subseteq SO(X, \tau)$, by Lemma 4.2 f is semi-weakly continuous.

Sufficiency. Let V be any regular open set of (Y, σ) . Since f is semi-weakly continuous, by Lemma 4.2 $f^{-1}(V) \in SO(X, \tau)$. Moreover, f is η -continuous, $f^{-1}(V) \in PO(X, \tau)$ and hence $f^{-1}(V) \in \tau^{\alpha}$ [11, Lemma 3.1]. Therefore, f is a. $\alpha. c.$

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be α -irresolute [5] if $f^{-1}(V) \in \tau^{\alpha}$ for every $V \in \sigma^{\alpha}$. We obtain a characterization of α -irresolute functions by utilizing *a.a.c.* functions.

LEMMA 4.3. Let A be a subset of a space (X, τ) . Then $A \in \tau^{\alpha}$ if and only if there exists a regular open set O in (X, τ) and a nowhere dense set N such that A=O-N.

PROOF. This follows easily from Proposition 4 of [9] and the proof.

THEOREM 4.5. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is α -irresolute if and only if f is a. α . c. and $f^{-1}(N)$ is α -closed in (X, τ) for every nowhere dense set N in (Y, σ) .

PROOF. Necessity. Assume that f is α -irresolute. It is obvious that f is $a.\alpha.c.$ Let N be nowhere dense in (Y, σ) . Then, $Int(Cl(N))=\emptyset$ and $Y-N \subset Y=Y-Int(Cl(N))=Cl(Int(Y-N))$.

Therefore, we obtain $Y-N \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(Y-N)))$. This shows that $Y-N \subset \sigma^{\alpha}$. Therefore, $f^{-1}(Y-N) \subset \tau^{\alpha}$ and $f^{-1}(N)$ is α -closed in (X, τ) .

Sufficiency. Let $V \in \sigma^{\alpha}$. By Lemma 4.3, V = O - N, where O is regular open in

 (Y, σ) and N is nowhere dense in (Y, σ) . By the hypothesis, $f^{-1}(0) \in \tau^{\alpha}$ and $f^{-1}(N)$ is α -closed in (X, τ) and hence we have

$$f^{-1}(V) = f^{-1}(0) \cap (X - f^{-1}(N)) \in \tau^{\alpha}.$$

This shows that f is α -irresolute.

REFERENCES

- S. Gene Crossley and S.K. Hildebrand, Semi-topological properties, Fund. Math., 74(1972), 233-254.
- [2] P.F. Dickman, Jr., J.R. Porter and L.R. Rubin, Completely regular absolutes and projective objects. Pacific J. Math., 94(1981), 277-295.
- [3] L.L. Herrington, Some properties preserved by the almost-continuous functions, Boll. Un. Mat. Ital. (4), 10(1974), 556-568.
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [5] S.N. Maheshwari and S.S. Thakur, On α-irresolute mappings, Tamkang J. Math., 11(1980), 209-214.
- [6] S.N. Maheshwari, Chae Gyu-Ihn and P.C. Jain, Almost feebly continuous functions, Ulsan Inst. Tech. Rep., 13(1982), 195-197.
- [7] S.N. Maheshwari and U.D. Tapi, Note on some applications on feebly open sets, J. Univ. Saugar (to appear).
- [8] A.S. Mashhour, I.A. Hasanein and S.N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hung., 41(1983). 213-218.
- [9] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [10] T. Noiri, Between continuity and weak-continuity, Boll. Un. Mat. Ital. (4), 9(1974), 647-654.
- [11] T. Noiri, On α-continuous functions, Casopis Pest. Mat., 109(1984), 118-126.
- [12] T. Noiri and B. Ahmad, On semi-weakly continuous functions, Kyungpook Math. J., 25(1985), 123-126.
- [13] I.L. Reilly and M.K. Vamanamurthy, Connectedness and strong semi-continuity, Časopis Pěst. Mat., 109(1984), 261-265.
- [14] M.K. Singal and A.R. Singal, Almost-continuous mappings, Yokohama Math. J., 16(1968), 63-73.

Yatsushiro College of Technology Yatsushiro, Kumamoto 866 Japan

77