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ALMOST «-CONTINUOUS FUNCTIONS
By Takashi Noiri
1. Introduction

In 1968, Singal and Singal [14] introduced the notion of almost-continuous
functions. Recently, Mashhour et. al. (8] have defined and investigated a new
class of functions called a-continuous functions. These functions have been
further investigated by Reilly and Vamanamurthy [13] and the present author
[11]. On the other hand, Maheshwari et. al. [6] introduced the concept of
almost feebly continuous functions.

The purpose of the present paper is to introduce the concept of almost
a-continuity in topological spaces as a generalization of a-continuity and
almost-continuity. In Section 3, we obtain several characterizations of almost
a-continuous functions and show that almost e-continuity is equivalent to
almost feeble continuity. In the last section, we obtain several properties of
almost a-continuous functions and a characterization of ea-irresolute functions
due to Maheshwari and Thakur [5].

2. Preliminaries

Throughout the present paper, (X ,7) and (¥, ¢) (or simply X and Y¥) denote
topological spaces on which no separation axioms are assumed unless explicitly
stated. Let S be a subset of (X, 7). The closure of S and the interior of S are
denoted by CI(S) and Int (S), respectively. A subset S is said to be regular
open (resp. regular closed) if Int (C1(S))=S (resp. Cl{nt (§))=S). A subset
S is said to be a-open [9] (resp. semi-open [4], pre-open [8]) if SCInt (CI
(Int(S))) (resp. SCCI(Int(S)), S<Int(CI(S))). The complement of an a-open
(resp. semi-open) set is called a-closed (resp. semi-closed). The family of all
a-open (resp. semi-open, pre-open) sets of (X, 7) is denoted by - (resp. SO
(X, 7), PO(X, 7)). It is shown in [9] that “is a topology for X and "
—SO(X, 7). It is also shown in [11] that " =PO(X, ©)NSOX, o).

DEFINITION 2.1. A function f: (X, 7)—(Y, o) is said to be a-continuous [8]



72 Takashi Noir{

if £ e for every Vo,

DEFINITION 2.2 A function f: (X, ©)—(Y, 0) is said to be almost continuous
[14] if for each x&X and each V&o containing f(x), there exists U&r containing
x such that f(U)CInt(CI(V)).

REMARK 2.1. It is shown in [11] that a-continuity and almost-continuity
are independent of each other.

DEFINITION 2.3. A function f: (X, 1)=(Y, ¢) is said to be almost a-continuous
(briefly a.a.c) if f _I(V)etnr for every regular open set V of (¥, o).

REMARK 2.2. It is obvious that almost a-continuity is implied by a-continuity
and almost-continuity. However, by Remark 2.1 the converses are not true in
general,

DEFINITION 2.4, A function f: (X, 1)—=(Y, o) is said to be n-continuous (2]
if every regular open sets U, V of (¥, @),
(@) £ (VH)cInt(CIF (vV))) and

M) Int I W NV =Int €I @) NIntCIF ).

REMARK 2.3. It is shown in [11] and [2] that both e-continuity and almost-
continuity imply n-continuity.

THEOREM 2.1. If f: (X, )=, o) is a.a.c., then it is np-continuous.

PROOF. Let U, V be any regular open sets of (Y, o). Since f is a.a.c.,
fkl(V)EraCPO(X, 7) and hence f_l(V)Clnt(CI(f_l(V))). Moreover, since
f_l(V)ErdCSO(X, 7), by Lemma 3.5 of [11] we obtain (b) of Definition 2. 4.

REMARK 2.4. The converse of of Theorem 2.1 is not true in general as the
following example shows.

EXAMPLE 2.1. Let X={a, b, ¢, d} and t=1(0, [d), (e ¢}, {a, ¢, d), X).
Let ¥=1lx, v, 2} and ¢=1{0, (x}, {2}, {x, 2), Y). Define a function f: (X, )
= (Y, o) as follows: f(a)=x, f(b)=j(c)=y and f(d)=Z. Then f is np-continuous
but it is not a.a.c. since {x] is regular open in (¥, ¢) and la] 1.
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REMARK 2.5. We have the following relationships, however, by Remarks 2.1
and 2.4 none of these implications is reversible.

a-continuous
i

continuous< “ia. . c. —7-continuous

“>almost-continuous~

3. Characterizations

Let S be a subset of a space (X, 7). The intersection of all semi-closed sets
containing S is called the semi-closure of S[1] and is denoted by sCI(S). A
subset S is said to be feebly open [7] if there exists U<t such that UCSTsCI(U).
A function f: (X, ©)—(Y, ¢) is said to be almost feebly continuous (resp.
Feebly continuous) [6) if fHI(V) is feebly open in (X, ) for every regular open
(resp. open) set V of (¥, o).

LEMMA 3.1. Let U be a subset of e space (X, 7). Then U=PO(X, 1) if and
only if Int(CI(U))=sCI(U).

PROOF. Suppose that U=PO(X, 7). It is shown that Int(CI(S))CsCI(S) for
every subset S of X [11, Lemma 4.14]. Let 2= Int(CI(U)). Then x&=X-Int
(CIU))ESOX, ) and U NX-Int(CIU))) =0 since UPO(X, 7). This shows that
x£sCl(U). Therefore, we obtain sCI(U)=Int(CI(U)). The converse is obvious
since SCsCI(S) for every subset S of X.

LEMMA 3.2. Let U be a subset of a space (X, 7). Then U=z" if and only if
U is feebly open in (X, 7).

PROOF. It is shown in Lemma 4.12 of [11] that U=z~ if and only if there
exists Ge=7 such that GCUCInt(CI(G)). Therefore, Lemma 3,1 completes the
proof.

THEOREM 3.1. A function f: X->Y is a.a.c. (resp. a-continuous) if and only
if it is almost feebly continuous (resp. feebly continuous).

PROOF. This is an immediate consequence of Lemma 3. 2.

THEOREM 3.2 For a function f: (X, )=, @), the following are equivalent:
(@) f is a.a.c.
(0) For each x=X and each V<o containing f(x), there exists Ut containing



74 Takashi Noiri

x such that fF(U)CInt(CI(V)).
(c) f_l(F) is a-closed in (X, 1) for every regular closed set F of (Y, ).

PROOF. This is obvious.

The topology having the regular open sets in (X, 7) as a basis is called the
semi-regularization of t and is denoted by T

THEOREM 3.3 For a function f: (X, t)—(Y, ), the following are equivalent:
(@ f: X, 0)», o) is a.a.c.

@ F: X, 0)-(, a‘s) is ce-continuous.

) fs X, Y= (Y, @) is almost-continuous.

@ f: (X, 7O, 0g) is continuous.

PROOF. Every Vo is the union of regular open sets of (¥, ¢). Therefore,
(a) is equivalent to (b). It is obvious that (a), (¢) and (d) are all equivalent.

4. Some properties

LEMMA 4.1. Let A be a subset of a space (X, ©). If either A=SO(X, 1) or
A=PO(X, 1), then AV is a-oper in the subspace (A, t/A) for every ver,

PROOF. This follows from [13, Lemma 2] and [8, Lemma 1.1].

It is shown in [6, Proposition 4] that f:X—Y is almost feebly continuous
and A is open in X then the restriction S|4 : A-Y is almost feebly continuous.
As an improvement of this result, we have the following.

THEOREM 4.1, Let f: (X, )=, 0) be an a.a.c. function. If either A=S0
(X, 1) or A=PO(X, 1), then the restriction flA: (A, t/A)— Y, 0) is a.«.c.

PROOF. Let V be a regular open set of (¥, ¢). Since f is a.ax.c., f_l(V)Erd
and by Lemma 4.1 fﬂl(V)ﬂA:(fIA)_L(V)E(r/A)a. Therefore, f| A is a. a. c.

In [3, Theorem 2.1] and [10, Corollary 4], it is shown that if f:X-Y is
an almost-continuous injection and Y is Hausdorff then X is Hausdorff. The
following theorem is a slight improvement of this result.

THEOREM 4.2, If f: (X, ©)=(, o) is an a.a.c. injection and (Y, 0) is
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Hausdorff, then (X, t) is Hausdorff.

PROOF. Since f is a.a.c., by Theorem 3.3 f: (X, =¥, ¢) is almost-
continuous. Since (¥, ¢) is Hausdorff, so is (X, t) [3, Theorem 2.1]. It
follows from the proof of [11, Corollary 4.7] that (X, 7) is Hausdorff.

In [11, Theorem 4.9], the present author showed that if f, g:X—Y are
a-continuous and ¥ is Hausdorff then (x&X |f(x)=g(x)} is a-closed in X. The
following theorem shows that the assumption “a-continuous” in this result can
be replaced by “a.a.c.”

THEOREM 4.3. If f, g: (X, ©)—=(, 0) are a.c.c. and (Y, o) is Hausdorff,
then (x=X|f(x)=g(x)} is a-closed in (X, 7).

PROOF. Since f, g:(X, 7)-, ¢) are a.a.c., by Theorem 3.3 f, g:
X, -, o) are continuous. Since (¥, o) is Hausdorff, x=X|f(x)=g(x)}

is closed in (X, ) and hence it is a-closed in X, 7).

A function f: (X, )=, 0) is said to be semi-weakly continnwous [12] if for
each x&=X and each V&e containing f(x), there exists U=SO(X, 1) containing
x such that fF(U)sCI(V).

LEMMA 4.2. A function f: (X, ©)—(, o) is semi-weakly continuous if and
only if f_l(V)ESOCX. t) for every regular open set V of (Y, o).

PROOF. Necessity. Let V be a regular open ret of (¥, ¢). For each xef"l
(V), there exirts U,&SO(X, 1) containing x such that fWU ,sCI(V). By
lemma 3.1, we have sCI(V)=Int(CI(V))=V and hence €U ,—f (V). There-
fore, it follows from Theorem 2 of [4] that f_l(V)ESO(X.‘:).

Sufficiency. Let x=X and f(x)EV&a. Put U=F ' (Int(CI(V))), then reUc
SO(X, 7) and fF(U)CInt(CI(V))=sCI(V) by Lemma 3.1. This shows that f is
semi-weakly continuous.

REMARK 4.1. Semi-weak continuity and 7-continuity are independent of each
other. In Example 2.1, f is p-continuous but it is not semi-weakly continuous
since {x} is regular open in (¥, ¢) and {a) #SO(X, 7). Moreover, a semiweakly
continuous function is not necessarily 7-continuous as the following example
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shows.

EXAMPLE 4.1. Let X={a, &4, ¢}, =0, (@), (b}, la, 8}, X) and c=1{0, (4},
{b, ¢}, X}. Then the identity function f: (X, r)—(X, ¢) is semi-weakly
continuous, However, f is not n-continuous since (4, ¢| is regular open in
(X, o) and £ ({b, ¢]) does not satisfy (a) of Definition 2. 4.

THEOREM 4.4. A function f: (X, 7)Y, 0) is a.a.c. if and only if and
only if it is n-continuous and senmi-weakly continuous.

PROOF. Necessity. Suppose that fis @.a.c. By Theorem 2.1, f is p-continuous.
Since 7 —SO(X, ©), by Lemma 4.2 f is semi-weakly continuous.

Sufficiency. Let V be any regular open set of (¥, ¢). Since f is semi-weakly
continuous, by Lemma 4.2 f_l(V)ESO(X. 7). Moreover, f is 75-continuous,
f_l(V)EPO(X, 7) and hence f_l(V)E'.:‘Jlr [11, Lemma 3.1]. Therefore, f is
a.a.c.

A function f: (X, )=, 0) is said to be a-irresolute [5] if f_l(V)ErClr for
every Ve=a". We obtain a characterization of a-irresolute functions by utilizing
a.a.c. functions.

LEMMA 4.3. Let A be a subset of a Space (X, 7). Then Ae” if and only if
there exists a regular open set O in (X, 1) and a nowhere dense set N such
that A=0-N.

PROOF. This follows easily from Proposition 4 of [9] and the proof.

THEOREM 4.5. A function f: (X, ©)—, o) is a-irresolute if and only if f
is a.cx.c. and f_l(N ) is a-closed in (X, t) for every nowhere demse sei N in

&, ok

PROOF. Necessity. Assume that f is a-irresolute. It is obvious that f is
a.o.c. Let N be nowhere dense in (¥, ¢). Then, Int(CI(N))=0 and
Y-NCY =Y —Int(CI(N))=Cl(nt(¥ —N)).
Therefore, we obtain ¥ —NCInt(Cl(Int(¥ =N))). This shows that ¥ —Nco".
Therefore, f_l(Y—N)Er“ and fdl(N) is a-closed in (X, 7).
Sufficiency. Let Veo”. By Lemma 4.3, V=0-N, where O is regular open in
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(Y, o) and N is nowhere dense in (Y, ¢). By the hypothesis, f_l(O)ErClr and
f_l(N ) is a-closed in (X, 7) and hence we have
Flon=ronx-rone”

This shows that f is e-irresolute.
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