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EXAMPLES OF NEAR-RING NEUMANN SYSTEMS
By B.C. McQuarrie and J.]. Malone, Worcester

Abstraet: In 1940, B.H. Neumann, working with a system more general than
a near-field, proved that the additive group of such a system (and of a near-
field) is commutative. The algebraic structure he used is known as a Neumann
system (N-system). Here, the prime N-systems are classified and for each
possible characteristic, examples of N-systems which are neither near-fields
nor rings are given. It is also shown that a necessarv condition for the set of
all odd polynomials over GF(p) to be an N-system is that p is a Fermat prime.

1. Introduction

A Neumann system is a (left) near-ring (N, +, +) such that

(1) rt=st and ¢#0 imply r=s;r,s,t in N.

(2) there exists ¢#0 in N such that e2=e. and

(3) there exists an k in N such that k+h=e.

Such a system, more briefly referred to as an N-system, was introduced in
[5] and there shown to have commutative addition. Since any near field is an
N-system, this demonstrated commutativity of the additive group of a near-fi-
eld. N-systems have also been discussed in [2], [4], and [6].

It is easy to show that e is a right identity and the characteristic of an N-
system must be zero or an odd prime. Furthermore, with a prime N-system
defined to be an N-system whose only sub-N-system is itself, we can quickly
discern the prime N-systems. If N is an N-system of characteristic 0, then N
contains a copy of Z and so must also contain 1/2. Let S N be the sub-N-
system generated by 1/2, i.e. S= [m,f’zklk a non-negative integer, m an odd
integer or 0}. It is readily seen that S is an N-system and an integral domain.
If N is an N-system of characteristic p, then the proof used to establish the
prime fields of characteristic p may be adapted and used to show that the
prime N-system of N is GF(p). This last result is to be expected since Theorem
1.4 of [1] or Theorem 1,2 of [3] guarantees a finite N-system is a near-field.

The only proper N-system (one that is neither a near-field nor a ring)
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appearing in the literature is the one of characteristic zero originally given
in [4]. The main goal of this paper is to show that there are proper
N-systems for cach possible characteristic. Obviously, any proper N-system
has to be infinite.

2. Examples

In this section the example of [4] is generalized and examples of proper
N-systems are given for each possible characteristic. The basic approach used
is to consider sets of polynomials over prime N-systems. Addition will be as
usual; however multiplication will be taken as substitution or composition:
(x)f o (XDh=((x)f)h. If R is a commutative ring with identity, then R[x] will
be used to designate the set of all polynomials over R with operations as just
described. It is well known that R[x] is a near-ring whose additive group is
abelian,

Note that although R[x] is a near-ring, it is not an N-system since x o =
(—x)oxz. Because of such difficulties we restrict attention, except for the
zero polynomial, to polynomials in which each term has odd degree and refer
to these as odd polynomials. Also, when R is some GF(p) we take the
polynomials to be polynomial forms rather than polynomial functions since, for
the polynomial functions, x o (2" D=x""6 (x+2""> for each odd prime p
although, for p>>3, x and & 7% define different functions.

The set of all odd polynomials forms (and the 0) with operations as given
above will be designated by R((x)). Clearly, R((x)) is a near-ring. Also, in
order for R((x)) to be an N-system, R itself must be an N-system. If e is
the halvable identity of R, then ex is the halvable identity of R((x)). Thus,
to show R((x)) is an N-system, we need only show that R((x)) satisfies the
right cancellation law. In investigating the right cancellation law in R((x))
the following notation will be used.

Let (x)f, (x)h, (x)g be in R((x)) where (x)f=ax+tax +, (Oh=bzx+bx
+-, and (x)g=c1x+03x3+---. Assume

(Of e ()g=@he(x)g, (x)g#0.
By equating the coefficients of like powers of x, we attempt to show recursively
that @,=b,, a,=b,, etc., so that (x)f=(x)h.

Note that if the coefficient of an arbitrary power of x, say x', is considered,
then t he contribution to the coefficient from cz,((x)f Y is ¢, times a sum of terms.
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Each of these terms has » of the a’'s as factors and in fact the subscripts of the
a's in any one of the terms constitute a partition of the integer s into »
positive, odd, integer summands. With cach term there is a numerical coeffi-
cient which corresponds to the number of permutations of the @'s used in that
term.

Also, £ will be such that €, is the first non-zero coefficient of (x)g and, if
(x)f#0, ¢ will be the subscnpt of the first non-zero coefficient of (x)f.

The following proposition introduces a condition which will be of continuing
interest.

PROPOSITION 1. Let R be a halvable inlegral domain. A necessary condition
for R((x)) to be an N-system is that (") a =b" implies a=b for a, b in R: w
an odd positive inieger.

w o w w w

PROOF. If ¢“=b" but @b, then axox'=a"x =b"x"=bxox" so that the right

cancellation law does not hold.

We now show that, for each possible characteristic, there are proper N-
systems. Theorem 2 lays the groundwork for characteristic 0 while Theorem 3
takes care of characteristic p.

THEOREM 2. Let R be a halvable integral domain of characteristic 0. Then
condition () is necessary and sufficient for R((x)) to be an N-system.

PROOF. If (x)f=0, then (x)fe°(x)g=0. Assume (x)h#0 and that &, is the
first non-zero coefficient of (x)h. But then, equating coefficients of X we
have that 0=c, bk Hence »,=0 and (x)h=0.

Now consuier the case m “h]Ch (x)f#0, EQuatmg coefficients of x° we obtain
k k

ca =cb b which implies a ”b so that by ( )a =b,. Assume that ¢ =b_ for

s such that 0<s<t, 1If q"‘>t that is if a, =b =0 for Each such s then from the

.. th k
coefficients of x~ we have c,a =c, b and a,=b,

k't
(k l)qf

If ¢<¢ then consider the coefficients of «x . On the left a contribution

to this coefficient of ke ak_la[ is obtained from ck((x)f)k. If any other contri-

m

butions come {rom ¢ ((x)f)

” , m=k, then all a; involved in these must have

j<t. Similarly on the right, ck((x)h)k yields kckb':—lb! and other contributions
involve b}. with j<{. Since the pattern of coefficients is the same on the right
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as on the left except that b, appears rather than a;, since a,=b, for ¢<¢, and
since, after composition, corresponding coefficients on each side of the equality
are equal, it follows that kckaj_lafzkckai_lb,. Since none of the first three
factors is 0, we conclude that a,=b, so that (x)f=(x)h and the right cancella-
tion law holds. .

[t is of interest to note that the complex numbers do not satisfy (*) but that
any subring of the reals does. In particular, S((x)) is an N-system as is F((X))
where F is the field of real numbers. This result on F((x)) was previously
given in [4] where it was also shown that F((x)) is a proper N-system. In [4]
the right cancellation law for F((x)) was proved by using Rolle’s Theorem.

THEOREM 3. For each odd prime p, there exist proper N-systems of charac-
teristic p.

PROOF. For each odd prime p, let R be GF(p) and let m be a fixed positive
even integer. Consider the set R[[x]] of polynomials over R of the form

E‘awxl_‘;wm. w a non-negative integer. To establish that R[[x]] is a near-ring,

l‘t” must be shown that R[[¥]] is closed under multiplication. Bccause of the left
distributive law it is sufficient to show that a product such as ():,' 7 xl+w") o
(s X "*™) has the required pattern for its exponents. An arbltrar);c_t%rm in the
expansion of the product will have the form of a constant times
(sr rﬂa 1’6') a,(14-mk)+ +ﬂ.(l+mﬁ.)

where it is important to note that Zl'a =1+4um. But then

a (H-mk Yofreseafly (l-rmk J= Za, +m2‘ak —1+m(u-r2'alz)
which is as requnred Also, xisin R[[x]] and ((p+1)/2)x is its half. The right
cancellation law remains to be proved.

Condition (*) applied here takes the form:
@ T =" implies a=b for a,b in R; w a non-negative integer.

1-+wm

In essence this requires that the correspondence e¢—a
of the multiplicative group of non-zero elements of R=GF(p). That is,
for all possible w, (p—1, 1+wm)=1. For reasons explained below, we also
impose the condition that p not divide 1+wm. Now it is seen that a possible
choice for m is p(p—1). Obviously, many other choices could be made.

is an automorphism

The proof of the right cancellation law can now proceed as in the proof of
Theorem 2. Since p—1 divides m, we have condition (" ). Since p divides m,
p can never divide and exponent and so, in the third paragraph of the proof of
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Theorem 2, the difficulties which would arise if k, as a coefficient, were zero
are avoided.

[t is easy to show that for each odd prime p, GF(p)[[x]] is a proper N-
system. The polynomial «' "™ is not invertible; hence the system is not a near
field. Also, (x+x ™ oz ™ is not equal to xox' "4z Moyt T"

system is not a ring.

hence the

3. A question

THEOREM 3. Skirts the issue of whether R((x)) is an N-system if R is a
finite field. The next theorem shows that in most cases the answer is no.

THEOREM 4. GF(p") satisfies condition (:) if and only if p is a Fermat
prime and n=1 or p=3 and n=2.

PROOF. In the first case, condition (T:) is satisfied if and only if the corres-
pondence a—a" is an automorphism of the multiplicative group of non-zero
elements of GF(p). That is if and only if, (w,p—1)=1 for each odd integer w.
Hence p—1 is a power of 2 and p has the form 9°+1. This implies that s itself
is a power of 2 and that p is a Fermat prime.

In the second case, p‘—l must be a power of 2. Then 2’=p"—l=(p—-1) (Pn_
+p”_2+---+p-[—l). Since the second factor on the right of the equation has =
terms, each of which is odd, adding up to a power of 2, it follows that = is
even. Since this is so, 9 Ip"—-l can be written as (p“'fe—l)(p"/g-‘rl). These two
factors are consecutive even integers each of which is a power of two. Hence
p=3 and n=2.

It is not known whether GF(p")((x)) is an N-system if p is as described in
Theorem 4. The proof employed for Theorem 2 and adapted for Theorem 3,
will not work if % is divisible by p since, in that case, the statement

k-1 k-1 ; w 2
k%"q ”r:k"kaq b, does not imply @,=b&, because &, as a coefficient, is zero.

1
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