EXAMPLES OF NEAR-RING NEUMANN SYSTEMS

By B.C. McQuarrie and J.J. Malone, Worcester

Abstract: In 1940, B.H. Neumann, working with a system more general than a near-field, proved that the additive group of such a system (and of a near-field) is commutative. The algebraic structure he used is known as a Neumann system (N-system). Here, the prime N-systems are classified and for each possible characteristic, examples of N-systems which are neither near-fields nor rings are given. It is also shown that a necessary condition for the set of all odd polynomials over GF(p) to be an N-system is that p is a Fermat prime.

1. Introduction

- A Neumann system is a (left) near-ring $(N, +, \cdot)$ such that
- (1) rt=st and $t\neq 0$ imply r=s;r,s,t in N.
- (2) there exists $e \neq 0$ in N such that $e^2 = e$, and
- (3) there exists an h in N such that h+h=e.

Such a system, more briefly referred to as an N-system, was introduced in [5] and there shown to have commutative addition. Since any near field is an N-system, this demonstrated commutativity of the additive group of a near-field. N-systems have also been discussed in [2], [4], and [6].

It is easy to show that e is a right identity and the characteristic of an N-system must be zero or an odd prime. Furthermore, with a prime N-system defined to be an N-system whose only sub-N-system is itself, we can quickly discern the prime N-systems. If N is an N-system of characteristic 0, then N contains a copy of Z and so must also contain 1/2. Let S N be the sub-N-system generated by 1/2, i.e. $S = \{m/2^k | k$ a non-negative integer, m an odd integer or 0. It is readily seen that S is an N-system and an integral domain. If N is an N-system of characteristic p, then the proof used to establish the prime fields of characteristic p may be adapted and used to show that the prime N-system of N is GF(p). This last result is to be expected since Theorem 1.4 of [1] or Theorem 1.2 of [3] guarantees a finite N-system is a near-field.

The only proper N-system (one that is neither a near-field nor a ring)

appearing in the literature is the one of characteristic zero originally given in [4]. The main goal of this paper is to show that there are proper N-systems for each possible characteristic. Obviously, any proper N-system has to be infinite.

2. Examples

In this section the example of [4] is generalized and examples of proper N-systems are given for each possible characteristic. The basic approach used is to consider sets of polynomials over prime N-systems. Addition will be as usual; however multiplication will be taken as substitution or composition: $(x)f \circ (x)h = ((x)f)h$. If R is a commutative ring with identity, then R[x] will be used to designate the set of all polynomials over R with operations as just described. It is well known that R[x] is a near-ring whose additive group is abelian.

Note that although R[x] is a near-ring, it is not an N-system since $x \circ x^2 = (-x) \circ x^2$. Because of such difficulties we restrict attention, except for the zero polynomial, to polynomials in which each term has odd degree and refer to these as odd polynomials. Also, when R is some GF(p) we take the polynomials to be polynomial forms rather than polynomial functions since, for the polynomial functions, $x \circ (x+x^{p-2}) = x^{p-2} \circ (x+x^{p-2})$ for each odd prime p although, for p > 3, x and x^{p-2} define different functions.

The set of all odd polynomials forms (and the 0) with operations as given above will be designated by R((x)). Clearly, R((x)) is a near-ring. Also, in order for R((x)) to be an N-system, R itself must be an N-system. If e is the halvable identity of R, then ex is the halvable identity of R((x)). Thus, to show R((x)) is an N-system, we need only show that R((x)) satisfies the right cancellation law. In investigating the right cancellation law in R((x)) the following notation will be used.

Let
$$(x)f$$
, $(x)h$, $(x)g$ be in $R((x))$ where $(x)f = a_1x + a_3x^3 + \cdots$, $(x)h = b_1x + b_3x^3 + \cdots$, and $(x)g = c_1x + c_3x^3 + \cdots$. Assume $(x)f \circ (x)g = (x)h \circ (x)g$, $(x)g \neq 0$.

By equating the coefficients of like powers of x, we attempt to show recursively that $a_1 = b_1$, $a_3 = b_3$, etc., so that (x)f = (x)h.

Note that if the coefficient of an arbitrary power of x, say x^s , is considered, then the contribution to the coefficient from $c_v((x)f)^v$ is c_v times a sum of terms.

Each of these terms has v of the a's as factors and in fact the subscripts of the a's in any one of the terms constitute a partition of the integer s into v positive, odd, integer summands. With each term there is a numerical coefficient which corresponds to the number of permutations of the a's used in that term.

Also, k will be such that c_k is the first non-zero coefficient of (x)g and, if $(x)f\neq 0$, q will be the subscript of the first non-zero coefficient of (x)f.

The following proposition introduces a condition which will be of continuing interest.

PROPOSITION 1. Let R be a halvable integral domain. A necessary condition for R((x)) to be an N-system is that $({}^{\times})$ $a^w = b^w$ implies a = b for a, b in R; w an odd positive integer.

PROOF. If $a^w = b^w$ but $a \neq b$, then $ax \circ x^w = a^w x^w = b^w x^w = bx \circ x^w$ so that the right cancellation law does not hold.

We now show that, for each possible characteristic, there are proper N-systems. Theorem 2 lays the groundwork for characteristic 0 while Theorem 3 takes care of characteristic p.

THEOREM 2. Let R be a halvable integral domain of characteristic 0. Then condition $(\overset{\times}{})$ is necessary and sufficient for R((x)) to be an N-system.

PROOF. If (x)f=0, then $(x)f\circ(x)g=0$. Assume $(x)h\neq 0$ and that b_i is the first non-zero coefficient of (x)h. But then, equating coefficients of x^{ih} , we have that $0=c_kb_i^k$. Hence $b_i=0$ and (x)h=0.

Now consider the case in which $(x)f\neq 0$. Equating coefficients of x^k we obtain $c^ka_1^k=c_kb_1^k$ which implies $a_1^k=b_1^k$ so that by $({}^{\!\!\!\!/})$ $a_1=b_1$. Assume that $a_s=b_s$ for s such that 0< s< t. If $q\geq t$, that is if $a_s=b_s=0$ for each such s then from the coefficients of x^{tk} we have $c_ka_t^k=c_kb_t^k$ and $a_t=b_t$.

If q < t then consider the coefficients of $x^{(k-1)q+t}$. On the left a contribution to this coefficient of $kc_ka_q^{k-1}a_t$ is obtained from $c_k((x)f)^k$. If any other contributions come from $c_m((x)f)^m$, $m \ge k$, then all a_j involved in these must have j < t. Similarly on the right, $c_k((x)h)^k$ yields $kc_kb_q^{k-1}b_t$ and other contributions involve b_j with j < t. Since the pattern of coefficients is the same on the right

as on the left except that b_i appears rather than a_i , since $a_i = b_i$ for i < t, and since, after composition, corresponding coefficients on each side of the equality are equal, it follows that $kc_ka_q^{k-1}a_t = kc_ka_q^{k-1}b_t$. Since none of the first three factors is 0, we conclude that $a_i = b_i$ so that (x)f = (x)h and the right cancellation law holds.

It is of interest to note that the complex numbers do not satisfy (*) but that any subring of the reals does. In particular, S((x)) is an N-system as is F((X))where F is the field of real numbers. This result on F((x)) was previously given in [4] where it was also shown that F((x)) is a proper N-system. In [4] the right cancellation law for F((x)) was proved by using Rolle's Theorem.

THEOREM 3. For each odd prime p, there exist proper N-systems of characteristic p.

PROOF. For each odd prime p, let R be GF(p) and let m be a fixed positive even integer. Consider the set R[[x]] of polynomials over R of the form $\sum_{m} a_{w} x^{1+wm}$, w a non-negative integer. To establish that R[[x]] is a near-ring, it must be shown that R[[x]] is closed under multiplication. Because of the left distributive law it is sufficient to show that a product such as $(\sum_{n=0}^{k} r_n x^{1+wm})$ (sx^{1+um}) has the required pattern for its exponents. An arbitrary term in the expansion of the product will have the form of a constant times $(sr_{k_1}^{a_1}r_{k_2}^{a_2}\cdots r_{k_s}^{a_s})x^{a_1(1+mk_1)+\cdots+a_s(1+mk_s)},$ where it is important to note that $\sum\limits_{i=1}^n a_i=1+um$. But then

$$(sr_{k_1}^{a_1}r_{k_2}^{a_2}\cdots r_{k_n}^{a_n})x^{a_1(1+mk_1)+\cdots+a_n(1+mk_n)},$$

$$a_1(1+mk_1)+\cdots+a_n(1+mk_n)=\sum a_i+m\sum a_ik_i=1+m(u+\sum a_ik_i)$$

which is as required. Also, x is in R[[x]] and ((p+1)/2)x is its half. The right cancellation law remains to be proved.

Condition
$$({}^{\star})$$
 applied here takes the form: $({}^{\star}{}^{\star})a^{1+wm}=b^{1+wm}$ implies $a=b$ for a,b in R ; w a non-negative integer.

In essence this requires that the correspondence $a \rightarrow a^{1+wm}$ is an automorphism of the multiplicative group of non-zero elements of R=GF(p). for all possible w, (p-1, 1+wm)=1. For reasons explained below, we also impose the condition that p not divide 1+wm. Now it is seen that a possible choice for m is p(p-1). Obviously, many other choices could be made.

The proof of the right cancellation law can now proceed as in the proof of Theorem 2. Since p-1 divides m, we have condition $({}^{**})$. Since p divides m. p can never divide and exponent and so, in the third paragraph of the proof of

Theorem 2, the difficulties which would arise if k, as a coefficient, were zero are avoided.

It is easy to show that for each odd prime p, GF(p)[[x]] is a proper N-system. The polynomial x^{1+m} is not invertible; hence the system is not a near field. Also, $(x+x^{1+m}) \circ x^{1+m}$ is not equal to $x \circ x^{1+m} + x^{1+m} \circ x^{1+m}$; hence the system is not a ring.

3. A question

THEOREM 3. Shirts the issue of whether R((x)) is an N-system if R is a finite field. The next theorem shows that in most cases the answer is no.

THEOREM 4. $GF(p^n)$ satisfies condition $({}^{\pm})$ if and only if p is a Fermat prime and n=1 or p=3 and n=2.

PROOF. In the first case, condition $({}^{\star})$ is satisfied if and only if the correspondence $a \rightarrow a^w$ is an automorphism of the multiplicative group of non-zero elements of GF(p). That is if and only if, (w, p-1)=1 for each odd integer w. Hence p-1 is a power of 2 and p has the form 2^S+1 . This implies that s itself is a power of 2 and that p is a Fermat prime.

In the second case, p^n-1 must be a power of 2. Then $2^l=p^n-1=(p-1)(p^{n-1}+p^{n-2}+\cdots+p+1)$. Since the second factor on the right of the equation has p terms, each of which is odd, adding up to a power of 2, it follows that p is even. Since this is so, $2^l=p^n-1$ can be written as $(p^{n/2}-1)(p^{n/2}+1)$. These two factors are consecutive even integers each of which is a power of two. Hence p=3 and p=2.

It is not known whether $GF(p^n)((x))$ is an N-system if p^n is as described in Theorem 4. The proof employed for Theorem 2 and adapted for Theorem 3, will not work if k is divisible by p since, in that case, the statement $kc_ka_a^{k-1}a_t=kc_ka_a^{k-1}b_t$ does not imply $a_t=b_t$ because k, as a coefficient, is zero.

REFERENCES

- Graves, J.A., and Malone, J.J., Embedding near domains, Bull. Austral. Math. Soc. 9, 33-42. (1973).
- [2] Ligh, S., On the commutativity of near rings II, Bull. Austral. Math. Soc. 6, 459—464. (1972).

- [3] Ligh, S., and Malone J.J., Zero divisors and finite near-rings, J. Austral. Math. Soc. 11, 374-378. (1970).
- [4] Ligh, S., McQuarrie, B and Slotterbeck, O., On near fields, J. London Math. Soc. (2), 5, 87-90 (1972).
- [5] Neumann, B.H., On the commutativity of addition, J. London Math. Soc. 15. 203-208 (1940).
- [6] Pilz, G., Near-Rings revised ed. Amsterdam-New York-Oxford: North-Holland. 1983.

Department of Mathematical Sciences Worcester Polytechnic Institute Worcester, Massachusetts 01609 U.S.A.