TRANSNORMAL SYSTEMS ON THE CAYLEY PROJECTIVE PLANE

by Kwang Sung Park

1. Introduction.

Transnormal systems in complete connected Riemannian manifolds were introduced by J. Bolton([1], [2]). He were concentrated on those systems containing hypersurfaces. As a special case, in spheres, his notion is equivalent to isoparametric families. Transnormal systems containing hypersurfaces in complex projective spaces and quaternionic projective spaces were studied in [6]. The method used in [6] is based on the observation that those projective spaces are images of Riemannian submersions of spheres. But the Cayley projective plane KP^2 can not be the image of a Riemannian submersion of a sphere. And this is the only compact, simply connected symmetric space of rank one which is not included in [6]. Sometimes, topological structures of manifolds determine some of their geometric features. In this paper, we investigate homology groups of hypersurfaces in transnormal systems in KP^2 to obtain some restrictions on codimensions of singular foils.

2. Preliminaries.

A system on a connected manifold N is a partition of N into nonempty connected submanifolds called foils. A transnormal system on N is a system in which N is a complete connected Riemannian manifold such that any geodesic of N cuts the foils of the system orthogonally at none or all of its points. It is non-singular if all of its foils have the same dimension. Otherwise it is singular. J. Bolton proved the following results ([1], [2]).

PROPOSITION 2.1. Let \mathcal{L} be a transnormal system in N with a foil of codimension 1. Then \mathcal{L} has at most two singular foils. Furthermore.

- (i) If $\mathcal L$ has no singular foils, then it is a metric foliation.
- (ii) If $\mathcal L$ has only one singular foil A, then either N has a vector bundle structure over A or N has double cover.
- (iii) If \mathcal{L} has two singular foils, then N has the topological structure of two sphere bundles over singular foils, glued together along their boundaries.

In the case(iii), let F be the homotopy fiber of the inclusion $j:M\longrightarrow N$ and let A_1 , A_2 be the two singular foils of codimensions k_1 , k_2 . Let $\phi_i:M\longrightarrow A_i$ the canonical map. Then the homology of the homotopy fiber F is given as follows ([4]):

(k, k_2)	$(H_i(F;Z)$	
$k_1 \neq k_2$	Z	$i=0$ or $i\equiv k_1, l \mod(k_1+k_2)$
no twists	$Z \oplus Z$	$i > 0$ and $i \equiv 0 \mod(k_1 + k_2)$
$k_1 = k_2$	Z	i = 0
no twists	$Z \oplus Z$	$i>0$ and $i\equiv 0$ $\operatorname{mod}(k_1)$
$k_1 > k_2 = 1$	Z	$i=0$ or $i\equiv\pm 1$ mod $(2k_1+2)$
ϕ_1 twisted	$Z \oplus Z$	$i>0$ and $i\equiv 0$ mod $(2k_1+2)$
	Z_2	$i \equiv k_1, k_1 + 1 \mod(2k_1 + 2)$
$k_1 = k_2 = 1$	Z	$i=0 \text{ or } i\equiv 3 \mod(4)$
ϕ_1 twisted	$Z \oplus Z_2$	$i \equiv 1 \mod(4)$
ϕ_2 not twisted	Z_2	$i\equiv 2 \mod(4)$
	$Z \oplus Z$	$i > 0$ and $i \equiv 0 \mod(4)$
$k_1 = k_2 = 1$	Z	i = 0
ϕ_1, ϕ_2 both twisted	$Z \oplus Z$	$i>0$ and $i\equiv 0$ mod(3)
	$Z_2 \oplus Z_2$	$i \equiv 1 \mod(3)$

Table 1

W. Thurston proved the following([8])

PROPOSITION 2.2. A closed manifold N has a codimension one foliation if and only if its Euler characteristic is zero.

3. Results.

Let \mathscr{L} be a transnormal system on the Cayley projective plane KP^2 with a hypersurface M. Then it has at most two singular foils. If it has no singular foils, then it gives a codimension one foliation. Thus the Euler characteristic of KP^2 should be zero. But the homology group of KP^2 is given as follows:

$$H_q(KP^2) = \begin{cases} Z & \text{for } q = 0, 8, 16 \\ 0 & \text{otherwise} \end{cases}$$

Thus the Euler characteristic of KP^2 is 3, a contradiction. Suppose that $\mathscr L$ has only one singular foil. Note that KP^2 is compact, and hence KP^2 can not have

a vector bundle structure. If KP^2 has a double cover \widetilde{N} , then we have the following Gysin exact sequence

$$\cdots \longrightarrow H^{q-1}(KP^2) \longrightarrow H^q(KP^2) \longrightarrow H^q(\widetilde{N}) \longrightarrow H^q(KP^2) \longrightarrow \cdots$$

with Z_2 coefficients. When q=0, we have the following exact sequence

$$0{\longrightarrow} Z_2 {\longrightarrow} Z_2 {\longrightarrow} Z_2 {\longrightarrow} 0,$$

a contradiction. Thus the case(iii) in Proposition 2.1 can not occur, and hence we have the following

PROPOSITION 3.1. Let \mathscr{L} be a transnormal system on KP^2 . Then it has two singular foils.

Let A_1 and A_2 be the two singular foils of $\mathscr L$ with codimensions k_1 and k_2 , respectively. Then we have the following decomposition

$$KP_2 = DA_1 \cup_M DA_2$$

where DA_1 and DA_2 are k_1 and k_2 sphere bundles over A_1 and A_2 , respectively. Then $H_{\pm}(F)$ $H_{\pm}(KP^2)$ is a term of a spectral sequence which converges to $H_{\pm}(M)$. Thus we can compute the homology of M by Table 1. Note that dim M=15 and hence $H_q(M)=H_{15-q}(M)$ by the Poincare duality. Using this fact, we can exclude almost all of the possibilities of (k_1, k_2) . For example, if $k_1 \neq k_2$ and $k_1, k_2 > 7$, then we have $H_7(M)=0$ and $H_8(M)=Z$, a contradiction. In fact, we have

PROPOSITION 3.2. Let $\mathscr L$ be a transnormal system on KP^2 and let k_1, k_2 be the two codimensions of singular foils of $\mathscr L$. Then (k_1, k_2) is equal to (1,1), (7,4) or (15,7).

The case (15,7) exists. In fact, A_1 is a point and A_2 is an 8-sphere. But we don't know if the other cases exist.

REFERENCES

- [1] J. Bolton, Transnormal hypersurfaces, Proc. Camb. Phil. Soc., 74 (1973), 43-48.
- [2] J. Bolton, Transnormal systems, Quart. J. Math. Oxford Ser. (2), 24 (1973), 385-395.
- [3] P. Griffiths and J. Morgan, Rational homotopy theory and differential forms, Birkhauser, 1981.

- [4] K. Grove and S. Halperin, Dupin hypersurfaces, group actions and double mapping cylinder, J. Diff. Geo., 26 (1987), 429-459.
- [5] J. Milnor and J. Stasheff, "Characteristic classes", Annals of Math. Studies, No.76, Princeton University Press, 1974.
- [6] K. Park, Transnormal systems on projective spaces, Ph. D. Dissertation, University of Maryland, 1988.
- [7] E. Spanier, Algebraic topology, McGraw-Hill, 1966.
- [8] W. Thurston, Existence of codimension-one foliation, Ann. of Math., 104 (1976), 249—268.
- [9] Q. Wang, Isoparametric maps of Riemannian manifolds and their applications, to appear.