Kyungpook Math. J.
Volume 28, Number 1
June, 1988

COMPACT REGULAR FRAMES AND THE SIKORSKI THEOREM

By B. Banaschewski

Recall that, in Zemelo-I‘raenkel Set Theory, the Sikorski Theorem (ST) by
which every complete Boolean algebra is injective, follows from the Axiom of
Choice (AC) and, in turn, implies the Boolean Ultrafilter Theorem (BUT),
where the latter implication is strict (Bell [3]) while it is still unknown
whether this also holds for the former. In fact, conflicting opinions have been
expressed in the literature on this point. Thus, Luxemburg [10] conjectured
that both implications are strict whereas Bell [3], after proving this for the
second one, leans to the view that ST may actually be equivalent to AC.

This paper presents an attempt to find, within the context of frames and of
topological spaces, an approach that might be helpful to resolve this question.
Specifically, we establish the equivalence between ST, the condition that every
deMorgan compact regular frames is injective in the category of all such
frames, and the assertion that, for any extension ML of compact regular
frames, there exist s&=M maximal such that x\Vs=e(=top element) implies
x—e, for all x=L. Analogously, in terms of topological spaces, we obtain that
ST is equivalent to the conjunction of BUT and the condition that, for any
continuous onto map f: X—Y between compact Hausdorff spaces, there exists
a closed subspace ZC ¥ minimal such that f[Z] =X, and the conjunction of
BUT with the condition that the extremally disconnected compact Hausdorff
spaces are the projectives in the category of all such spaces.

In preparation for these results, we need to establish a number of facts
concerning compact regular frames, most notably the existence of maximal
essential extensions, which we call Gleason envelopes. It should be emphasized
that, if BUT is assumed, all facts required here are immediate consequences of
familiar results, especially those of Gleason [5] on projective compact Hausdorff
spaces, in view of the duality between compact regular frames and compact
Hausdorff spaces which then follows because BUT implies the spatiality of such
frames (Banaschewski [1]). The point here is to establish these facts without
the assumption of any choice principle.
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Concerning Gleason envelopes, it should be added that a good part of what
is presented here is contained in the much more general results of Johnstone
[7,8] on the Gleason cover of a topos. However, it may still be of some merit
to have a direct lattice theoretic treatment of this important special case which
avoids the extensive topos theoretic machinery required in [7,8].

Even though, in the end, this paper fails to establish the exact relation be-
tween ST and AC it is hoped that the various equivalents of ST offered here
may yet prove to be of some use in determining the precise strength of ST.

This paper was written during my visit to the Department of Mathematics
at Sogang University in Seoul, Korea, in November 1987. Financial assistance
from the Korean Science and Engineering Foundation is most gratefully ac-
knowledged, and warmest thanks go to my Korean colleagues, above all to my
former student Hong Sung Sa of Sogang University, for most generous hospi-
tality.

1. Some basic facts

First we recall some general terminology. A frame is a complete lattice
satisfying the distribution law x/A\\Vx,=Vx/x, for binary meet A and arbitrary
join V. A map h: L—M between frames is called a homomorphism whenever it
preserves finite meets and arbitrary joins, including the empty cases which
means preservation of the unit e (=top) and the zero 0 (=bottom). In any
frame, an element c¢ is called compact if eV x, GEID), for any family of ele-
ments (x),_,, impliesc<Vzx, (RSE) for some finite subset ECJ/. A frame
itself is called compact whenever its unit is compact. For any elements x and
@ in a frame, x—3ae (x is rather below @) means that x/A\f=0 and e¢\/i=e for
some f. If e="\/x(x=a) for all its elements, a frame is called regular. KRegFrm
will be the category of all compact regular frames and their homorphisms. For
general background on frames and compact regular frames see Johnstone [9].

The following is a familiar characterization of embeddings, that is, one-one
homomorphisms, in KRegFrm.

LEMMA 1. For any h: L—M in KRegFrm, the following are equivalent:
(1) h is an embedding.

(2) For all x&L, h(x)=0 implies x=0.

(3) For all x=L, h(x)=e implies x=e.
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PROOF. (1)=>(2). Obvious.

(2)=>(3). If h(x)=e then also h(z)=e for some z—3x, by regularity and
compactness. Then, for ¢ such that zA¢=0and x\//=e, one has h(#)=h(z) Nk(t)
=h(z/A#)=0, hence t=0 by hypothesis and therefore x=e.

(3)=>(1). If h(x)=h(y), take any z—3x and ¢ such that zA?=0 and xVi=e.
Then e=h(x\/t)=h(y\V#), hence y\Vi=e by hypothesis, and therefore z<<y. Be
regularity, this shows x<y, and then x=y by symmetry.

Below, we let Ts= {x=L|x>s] for any element s of any frame L. Note this is
again a compact regular frame if L is, and the map (-)V/s:L—1s taking x to
x\/s is a frame homomorphism.

COROLLARY. Any h: L-M in KRegFrm has a decompositiion

Losytle—F—M

where s=\/lf1 0} and the homonmorphism h induced by h is an embedding.

PROOF. Since h(x)=h(x\/s) for any x=L, by the definition of s, we only
have to show that % is onc-one. If x>s in L then #Z(x)=0 implies x<Zs and
hence x=s, the zero of Ts. By Lemma 1 this shows & is one-one.

REMARK. Given any map h:L—M in KRegFrm and s:v‘k_l{ﬂ}. consider
the (x,y)=L such that
(x, W<(s, 5) or (x, Yk e} <k " e).
These clearly constitute a subframe K of L<L, and a more detailed analysis
shows that K is regular. It follows from this that & is onec-one whenever it is
monic: if p,q: K—L are the homomorphisms induced by the two projections
L« L—L then hp=hg, hence p=q and therefore s=0.

For later purposes we have to know that KRegFrm has pushouts. This is a
special case of the general fact that KRegFrm is closed under all colimils in
the (cocomplete!) category Frm of all frames. To see this we only have to
recall (Banaschewski-Mulvey [2]) that KRegFrm is coreflective in Frm: indeed,
the coreflection of any frame L is the largest regular subframe KL of the
frame JL of ideals of L, with coreflection map KL—L given by taking joins.

Of particular interest here will be the essential embeddings in KRegFrm,
that is, the embeddings % : L—M such that, for any map f: M—K in KRegFrm,
f is an embedding whenever fh is. Of course, this is a notion which plays a
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role in a large number of other categories. The following provides a useful
characterization.

LEMMA 2. An embedding h: L—-M in KRegFrm is essential iff, for each
a=M, if h(x)<a implies x=0, for all x&L, then a=0.

PROOF. (=) Consider any e=M such that h(x)<e implies x=0, for all x&L.
Then, for the composite homomorphism
g:L

M ove e

g(x)=a implies h(x)<a, hence x=0, and therefore g is one-one by Lemma l.
By essentialness, it follows that (- ) Ve is also one-one, showing that a=0.
(&) Given f: M—N in KRegFrm such that fi is an embedding, consider cny
a=M for which f(a)=0. Then, for any x=L, h(x)<a implies fh(x)<f(a)=0,
hence fii(x)=0 and therefore x=0. It follows then by hypothesis that =0, and
by Lemma 1 this shows f is an embedding. Hence, # is an essential embedding.

COROLLARY. If a composite fg:L—K—M of embedding in KRegFrm is
essential then g is essential.

PROOF. Consider any e=K such that g(x)<<a implies =0 for all x&L.
Then, fg(x)=f(a) implies g(x)<a and therefore x=0 for any x=L. Since fg
is essential, Lemma 2 implies that f(@)=0 and hence @=0. This shows g is
essential, by Lemma 2.

REMARK. It should be noted that the above arguments are constructive in
that they do not involve the Law of the Excluded Middle nor any choice
principle. If one is not concerned about that point then the essential embeddings
are alternatively characterized as those embeddings #: L—M such that, for
each ¢ >0 in M, there exist x=L for which 0<h(x)<a.

2. The gleason envelope

Recall the result of Gleason [5] that, for any compact Hausdorff space X,
there exists an extremally disconnected such space ¥ with an irreducible onto
map Y—X, where extremally disconnected means that open sets have open
closures and #rreducible that no closed proper subspace of ¥ is mapped onto X.
This fact about the category KHaus of compact Hausdorff spaces only requires
BUT so that, if this is assumed, one obtains the corresponding dual result in
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KRegFrm by means of the duality between KHaus and KRegFrm which also
follows from BUT.

It is a consequence of Johnstone [7] that this dual result can actually be
obtained directly and, moreover, constructively and hence in particular without
the use of any choice principle. Here, a purely lattice theoretic proof of this
fact is presented. Note there is one difference between the approach in [7] and
ours: we stress the role of essential extensions which has no counterpart in [7].

A Y—-X of the type described above is called the Gleason cover of X; hence
the dual construct in KRegFrm will be called the Gleason envelope.

A frame L is called deMorgan(also: extremely disconnected, or: Stone algebra)
whenever the identity *+” \Vx~ =e holds in L, where ( )7 stands for pseudo-
complementation, that is, x is the largest element in L disjoint from x. For
verious details concermng deMorgan frames see Johnstone [9]. Note in partlcular
that the identity x~ \Vx~ e is equivalent to the deMorgan law (xAy)" =x"

. Also, the frame of open sets of a topologicalspace X is deMorgn iff X
is extremely disconnected.

Here we are interested in the deMorgan L&KRegFrm. Such L are generated,
as frames, by the Boolean algebra CL of complemented elements of L because x—3
@ implies x~ * 3a for any x, @ in L and thcrcfore

eg=Vzx= Vx e

r—a x3a
for each e=L. This makes L isomorphic to the J(CL) of 1deals of CL. Fur-
thermore, CL is complete, the join of any SCCL being (/s)” . In particular,

this means, for any Boolean algebra B, that B is complete whenever JB is
deMorgan since B=C(JB). Conversely, for any complete Boolean algebra B,
JB is deMorgan since completeness implies, for any ideal J of B, that [ F =
1 (~VJ]) (~the complementation in B), and (la%zl("va) holds anyway for
each e=B. Finally, one casily sees that the correspondences L——~CL and B—JB
between compact regular deMorgan frames and complete Boolean algebras are
functorial, providing a category equivalence between the full subcategory of
KRegFrm given by the deMorgan frames and the category of complete Boolean
algebras and all Boolean homomorphisms between them.

Actually, the link between compact regular frames and complete Boolean
algebras is even closer than that: we shall now show that each L=KRegFrm
has an essential embedding into a compact deMorgan frame.

For any frame L, it is well-known that Lx [xeL|x= x } is a complete
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Boolean algebra (Glivenko [6]). If L is compact regular, put GL=J(L_ ) and
define
T : L-GL by T(a)=]a= {xELj;v’,_i:r—Ba}.

J, is indeed an ideal in L, ,: clearly y=x&J implies y&J], and x, y=J , implies
x\/z—3a and hence also (x\V2)" " 3a where (xV 2 " is the join of z and z in
Lo
Since a=Vx(x3@)=Vx  (xa) for each a=L, the map GL—L by taking
joins is left inverse to ¥ and hence 7" is one-one. Moreover, it is a frame
homomorphism: J, and fc are clearly the bottom and top, respectively, of GL.
Also, ]ﬂ;’l],,:]a ., since x=3@, & implies x—=3a/\b. Further, for updirected SCL,
]V'= L'J, (@=S) since x31/s means that x/\f=0 and ¢V Vs=e for some £, and
by compactness one then also has t\Va=e for some ¢=S so that x=a. Finally,
if x=3a¢Vb for x=L_ ,, and hence xA\¢=0 and @V bV t=e with suitable ¢, then
also (compactness agﬁin) u\/v\/t=e for some #—a and v3b which may be taken
such that u=«" and v=v , hence x=(x )V (x/v) where xAu-3a, x\v-=3b
and x A\w, xA\vEL P, This shows J GWQJ ﬂ\/f f and hence equality.

Thus 7 is a frame embedding. consider any J&GL such that J,CJ implies
a=0 for all e=L. Then, for any x&J, J <], hence x=0, and therefore Jis
the zero ideal. In all, this proves ‘

PROPOSITION 1. For each L=EKRegFrm, 1V : L—GL is an essential embedding
into a deMorgan frame in KRegFrm.

An obvious consequence of the rusult is that any L=KRegFrm which has no
proper essential extension is deMorgan since 7" : L—GL must be an isomorphism
for such L. This proves the easy part of the following

PROPOSITION 2. A4 compact regular frame is deMorgan iff it has no proper
essential extension.

PROOF. We have to show (=). Thus, let L=KRegFrm be deMorgan and
M_L any essential extension, that is, the identical embedding L—M is essen-
tial. We define 2 : M—L by

Ala)=V (r=L|x<a),

so that A(a) is the largest element in L below e=M. We establish a number
of fact concerning 4 in order to prove a=L for each a=M.

In the following, ()~ will be pseudocomplementation in M and ( )¥ that in L.
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First, a/\2(@)“ =0 for any a=M. If xga/\l(a)* for any x=L then also
x=A(a) by the defintion of Z and hence x= 0 thus ahA(@ " =0 by Lemma 2.

\ext a "-“Z(a) for each =M since A(a) *<a™ because a/\l(a) =0 whereas
@ <@ because 2(a)<a. ‘

Further, " =x" for each x&L. Obviously, x”<x” since LEM. On the other
hand, if a/Ax=0 for any e=M then trivially A(e) Ax=0, hence Z(a):/‘\x:=e

because L is deMorgan, and thcrcforc a<x" since a/\l(a):<a A 1(a)+ as
previously proved. Now, for e= x" this y1clds 5 <x®, and hence equahty
Finally, if ¢3a for any @, c=M then also ¢~ <@ where =" —Z(c)"#

by the two preceding steps. Since

a=\Ve=Ve¢"
c=a c¢3a

this means
a=\/A(c) §E
c—a

which says that e=L as desired.

We conclude this section with the following uniqueness result:

PROPOSITION 3. As an essential embedding in KRegFrm into a deMorgan
frame, T : L—=GL is unique up to a unique isomorphism.

PROOF. For any Lc=KRegFrm, consider any essential deMorgan extension
M>2L in KRegFrm. As before, we define 2: M—L by A(a)=Vzx(a=x=L).
Since ML is essential, we again have that A(a) is dense in a, for each e=M.
Also, as prviously, ( )% will be pseudocomentation in L, as opposed to ( i
in M. Now put

[a={xEL*_;_:_lx-%c} (acsM).
This is an ideal in L*T: First note that, for any z=L and ¢=M, if zAc=0
then zAA(c) =0 trivially, hcnce z%*/\i(t') =0 by the properties of pseudocom-
plementation, and finally z /\c 0 by density. This shows, for any z=L and
a=M, that z3a implies %" —3a Hence, for any xy<1, (x\/y)#:—?a. since
x\/y3a, showing that the join of x and y in L% . again belongs to 7.

We claim that the map @~ is a frame homomorphism M—GL, which
then obviously extends the embedding 7 :L—GL. That this map preserves
zero and unit, binary meet and updirected join is seen exactly the same
way as the corresponding properties of 7 ;concerning binary join, the
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argument here has to be more subtle. If ¥=a"/5 for any xEL__:__F and a,b=M
then, as previously noted, x=@/\x)V (vA\x) for u=a and v—}b‘ in M, which
may be taken suh that u=u" and v=0" . To get inside L, consider A(x/\x)
<wu/\x and A(vAx)<<v/x. Since these are dense in M it follows that A(u/x)
\A(u \x)<x is dense in L and hence
A@ADV @A) =277 =z,

This shows, for y=2(z¢f\x)== and z=2(u/\x)==, that x is the join of ¥ and z
in L, . Moreover, y<u and z<v: consider any !iij.r/\rf"T in L. Then ¢t AACu/\x)
=0 since #<<u", hence also {Ay=0 since A(x/\x) is dense in y, and therefore
t=0 since {<y. M being an essential extension of L, this implies y/\\u%zo.
and hence y<« =u. The argument equally applying to z, this now shows we
have y and z in L+ % such that y—a, z3b and x is their join in L**. Hence
I, ,=1,VI, as desired.

It now follows further that the frame homomorphism M—-GL by @I L, 15 an
embedding since it extends 7", and 7 is an essential embedding. Finally, the
image of M in GL has GL as essential extension and hence must be all of GL
by Proposition 2. Thus, our map M—GL is an isomorphism.

For the additional uniqueness property, let M_—L as before and h: M—M
any automorphism leaving each x&L fixed. Consider, first, any a=a  ~ in M.
Then, for A(a) defined as before, a*""'=2(a)** by density and hence azl(a)x
Therefore

ra)=h(A(@" " )=h@)" " =i@)" " =a,
showing that & also leaves each complemented element of M fixed. Finally,
since

a=\zx= \/x"'”r
=@ x—a

it follows that h(e)=a for all a=M, as claimed.

REMARK. Since any endomorphism # : GL—-GL such that 2'=7 must be an
automorphism, by the arguments in the above proof, it further follows that
the only such & is the identity map.

As a consequence of Proposition 3 we note the following.

COROLLARY. For any L=KRegFrm, 1 :L—-GL is the largest essential
extension of L.
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PROOF. Given any essential extension ML, LCM—GM is an essential
embedding of L into a deMorgan frame in KRegFrm, and the unique isomorphism
from GM to GL extending 7 then provides an embedding of M into GL exten-
ding 7.

In many situations, most typically for modules over a ring but also for a
variety of other notions, there is an intimate relationship between essential
extensions and injectivity. In fact, the result in those cases is that an object
is injective iff it has no proper essential extensions, and every object has an
injective essential extension, called its injective hull. The arguments required
to establish this usually involve AC; moreover, in certain cases, such as that
of abelian groups, the use of AC is known to be essential (Blass [4]).

We want to determine what is required to make the same results hold in
KRegFrm. For this, consider the following condition which expresses the reduc-
tion of arbitrary extensions to essential ones:

REE. For any extension ML in KRegFrm, there exist s&M maximal such
that xVVs=e implies x=¢, for all x&L.

Also, recall that, by general terminology, L=KRegFrm is injective iff, for
any embedding k:M—N and any homomorphism fj; M—L there exists a
homomorphism g : N—L such that gh=f.

Now we have

PROPOSITION 4. The compact regular deMorgan frames are exactly the
injectives in KRegFrm i{ff REE.

PROOF. (&) Without any assumption, the essential embedding ¥ : L—GL has
a left inverse whenever L is injective, which makes 7 an isomorphism and
therefore L deMorgan. Thus, we have to derive from REE that, conversely,
L=KRegFrm is injective if it is deMorgan. For this, consider first any exten-
sion M—L and let s=M be as in REE. Then the map L—1s taking x to xVs
is an essential embedding: if s<e there exists x<{e in L such that x\Ve=e¢ and
hence also z—x in L for which z\/e=e, and if t=L is such that z/\¢{=0 and
x\/t=e then t<a so that ¢\/s<e whereas s<t\/s since t<Is implies x\/s=e and
therefore x=e, a contradiction. It now follows from Proposition 2 that L—1s
is an isomorphism, showing there exist & :M—L such that h|L=id,. We
express this result by saying L is an absolute retract in KRegFrm.

In particular, this applies to the two-element frame 2 which is evidently
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deMorgan, but that in turn implies 2 is injective. To sce this, consider the
diagram

L——M
E ’ ‘ (- Vs

2—-*»?2(—EM | z2=s])
where h is any embedding, £ any homomorphism as indicated, s=Vh(x) (§(x)
=0), and the bottom map the unique homomorphism. Then, s<e since V§ _1{05
<e and k is an embedding. Hence the bottom map is an embedding, and since
2 is an absolute retract there exist g : (z=M |z=5)—>2 left inverse to it. As a
result, f: M—2 such that f(x)=g(xvs) is the desired map such that fh=§: if
£(a)=0 then h(a)<s, hence h(a@)vs=s, and therefore
fhia)=g(h(a)vs)=g(s)=0,
whereas £(@)=1 implies k(@)vs=e and hence fh(a)=1.
Now consider any diagram

h
M———N

|
L—K
u
where L is deMorgan, f a given arbitrary homomorphism, k a given embedding,
and K obtained by pushout. Then, take any a<e in L. Since the unique
homomorphism 2—fa is an embedding, it follows there is a homomorphism § :
L—2 such that £(a)=0, and since 2 is injective there further exist {: N—2
such that Lh=E&f. Then, by the property of pushouts, there exist ¢ : K—2 for
which gu=§ and ov={. In particular, cu(@)=0 which implies #(a) <e. By
Lemma 1, it follows # is an embedding, and since we already know L is an
absolute retract # has a left inverse w: K—L. Then, g=wwv:N—L is the
desired map such that f=hg.
(=) Given any extension ML in KRegFrm, let # : M—GL be an extension
of T : L-GL by injectivity and

M (_)Vs’;s 7 »GL

the decomposition of & as in the Corollary of Lemma 1. Then, for any x&L,
x\V/s=e implies T (x)=h(x)=h(x"/s)=e¢ and hence x=e¢. Thus, it remains to
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show s is maximal among the elements with this properry. Now, the homomor-
phism L—Ts induced by (-)Vs is an essential embedding by the Corollary of
Lemma 2, and hence, for any e<fs, if xVs<e¢ implies x=0, for all x&L,
then @=s. Now, consider any e=7s for which it is still the case that x\Va=e
implies x=e¢, for all x&L. Then, if xVs=<e for any ¥<L, take any y=3«x in L
and, correspondingly, /&L such that y/\{=e and therefore {=e by the hypothesis
on a. This implies y=0, and since y3x was arbitrary we have x=0 by regular-
ity. Thus, xVs=<e implies x=0, for all x=L, and therefore a=s. This estab-
lishes the maximality of s.

REMARK. AC clearly implies REE: for any given extension MZL in
KRegFrm, the set FC”M of all elements ¢ such that x\/¢=e implies x=e¢, for
each x=L, is closed under joins of chains, in fact even under joins of arbitrary
updirected sets, by compactness, and hence Zorn’s Lemma ensures the existence
of maximal elements in F.

3. The Sikorski Theorem

We are now ready to relate the Sikorski Theorem to conditions in KRegFrm
and in KHaus. The first result of this type is

PROPOSITION 5. ST iff the compact regular deMorgan frames are the injec-
tives in KRegFrm.

PROOF. (=) For any embedding % : L—M in KRegFrm with L deMorgan, the
composite map Tk : L-=M—GM induces a homomorphism f : CL—C(GM) between
the Boolean algebras of complemented elements of L and GM, respectively,
which has a left inverse g:C(GM)—CL by the injectivity of the complete
Boolean algebra CL. Hence, one has the commuting diagram

h ¥
L—M—GM

|

/
JCL ——= JC(GM)
g

where f and g are induced by f and g, respectively, and the vertical maps are
the isomorphisms between the compact regular deMorgan frames and the ideal
lattices of their lattices of complemented elements. Here, o‘g"fr_lr is a left
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inverse of h since g is a left inverse of f. This proves that every deMorgan
LcKRegFrm is an absolute retract, and by the first part of the proof of
Proposition 4 it then follows that L is injective.

(&) the category equivalence between complete Boolean algebras and compact
regular de Morgan frames is actually a part, of the more comprehensive equi-
valence between the category of all Boolean algebras and that of all zero-
dimensional compact regular frames, that is, those L&KRegFrm which are
generated by their complemented elements. This larger equiqalence is again
given by the ideal lattice functor in one direction and by the functor L-——CL,
taking the Boolean algebra of complemented elements, in the other. Hence, if
A is a complete Boolean algebra then JA=KRegFrm is deMorgan, hence injec-
tive in KRegFrm by the present hypothesis and thus, a fortiori, injective in the
category of O-dimensional compact regular frames which makes A itself an
injective Boolean algebra. '

Directly from the last proposition and Proposition 4 we obtain further:
PROPOSITION 6. ST iff REE.

Passing from frames to topological spaces, consider the following condition
which expresses the reduction to irreducible maps in KHaus:

RIM. For any continuous onto map f:X—Y between compact Hausdorff
spaces, there exists a closed subspace ZCX minimal such that f[Z] =Y.

The relation between this condition and its frame version REE is given in

LEMMA 3. REE iff BUT and RIM.

PROOF. (=) By Proposition 6, REE implies ST and hence the injectivity of
the two-element Boolean algebra, which is equivalent to BUT. TFurther, given
any onto map f : X—Y in KHaus and the associated embedding OY : 0V —0X
where O is the functor assigning the frame of open sets to a space, then the
S=0X provided by REE has as its complement a closed subspace ZCX minimal
such that f[Z] =Y. This follows from the observation that, for any closed
subspace TCX with complement We0X, f[T]=Y iff f71W)UW=X implies
U=Y, for all U=0Y.

(<) BUT implies the duality between KRegFrm and KHaus. Hence for any
extension M =L in KRegFrm, we can consider the dual f : X—Y where M=0Y,
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L=0X and f represents the inclusion map L—M. Then, the complement of the
closed subspace ZZX provided by RIM determines an element s=M of the
desired kind, again by the observation at the end of the previous paragraph.

As an immediate consequence of this lemma and the previous proposition we

now have
PROPOSITION 7. ST if BUT and RIM.

For our final result, recall that Gleason [5] proves the following, using AC:

GT. The extremally disconnected compact Hausdorff spaces are exactly the
projectives in KHaus.

The duality between KHaus and KRegFrm resulting from BUT then shows
that Proposition 4 also implies the following

PROPOSITION 8. ST iff BUT and GT.

REMARK. There is the following analogue of Proposition 6 dealing directly
with Boolean algebras: ST iff, for and extension B—A of Boolean algebras,
there exists an ideal /B maximal such that A()J=0. 1 am indebted to W.A.
J. Luxemburg for this observation who based it on the results of [11]. The
present context indicates a direct proof in which the completion of a Boolean
algebra parallels the role of the Gleason hull of a compact regular frame.
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