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In spite of that computing K~groups of topological spaces is one of important works
in K-theory, to do this is generally very hard. But, the followings have been com-
puted in [2] and [3]:

Rp)=Z , Rp(S)=Z and R o(Py(R))=Z/4

Rp(Sh=2/2, Rp(SH)=0 R, (P (R))=Z/2

Rp(SH=Z/2, Rp(SH=Z (A)
Rp(sH=0 , Ro(S9=0

Rp@H=2Z , Rpy(SH=2 J

where Z=the set of integers, R=:the set of reals, C=the set of complexes and P,
(R) is the »-dimensional real projective space. Since P, (R)=S$!, K r(PIR))=Z/2
and K (P (R)=0.

The purpose of this note is to compute K-groups Rp(S¢), R¢(S% and Ro(Ps(R)),
where F=R or C (Theorem 4 and Theorem §).

Throughout this note by a topological space we mean a connected and compact

topological space without any statements. For a topological space X we shall put

Vecp(X)=the class of all /' -vector bundles over X.

Then,
Dp(X) =Vecp(X) />

is an abelian monoid with the Whitney sum of vector bundles as the acditive operator
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in ®,(X), where “==" means to be isomorphic between vector bundles over Y. Let
K#(X) be the symmetrization ([3]) of the abelian monoid &,(X). Then K,(X) is
abelian and it is called the K-group of X,

Let {p} be a topological space consisting of only one point p, and let X—— {p}

be the projection. This projection induces a group homomorphism
Z=Ke({1)— K#(X),

whose cokernel is denoted by K,(X) which is called the reduced K-group of X. It
follows that

Ke(X)=ZDR(X)

(23, 03], [4D.
Let ®2(X) be the set of isomorphism classes of F-vector bundles of rank # over

a topological space X. Taking the Whitney sum by trivial bundles enables us to define

an inductive system of sets such that
LX) DL X)) . BE(X) ...,

where @3(X)— @3 (X) is defined by [EJr— [EIDR[0.Ix[EDH,.] and 8, a trivial

bundle of rank z over X. If we put
Jim 03(X) =04 (X)
then we have
Ra(X)m@y (X)) oveeremmrersestmeemniiniiiiies s e ainn (B)

(£33, [4D).
On the other hand there is the formula

Tt (GLy(F))/mo{GL(F)y =05 (ST,
where GL,(F) is the general linear group of degree p over F([2],13],[4]). Since

GL,(R)=O(p)xR* (qg=p(p+1)/2)
wwime 2 —
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GL,(O)y=U(py xR (g=1%,

where O(p)=the orthogonal group of degree p over R and U (p) =the unitary group

of degree p over €, we have the following:

05(S") =701 (GL,(R)) /o(GLy (R))
27,1 (0(p) X RY) /mo(0(p) X B
27,1 (0(0))/7o(0(5))

and

05(S) =7, (U (9)) /70U ().

OL(S") 27 1 (0(0))/2/2, OH(SI =Ty (U(R)) wroovev (©>.
Proposition 1. (i) If p>>i+1 then 7, (O(9)) =z, (0(4+1)), and hence_l_i_r&m(O(m))
=r, (0(P)).-
(ii) If p>~%—« then 7 . (U())=r Up+1)), and hence_lgn*x,(U(m))?xn,-(U(p)).
Proof. Consider the locally trivial fibration
O(p)— 0P+ 1)~ 8"=0(p+1)/0(p)

where O(p)—>0(p+1) is defined by A(ezO(p))vw»(g* ?) ([2]). Thus we have the

long homotopy exact sequence

v oo T () T (O (D)) —— (0P + 1) )= (SF) .
([1]. Since if ¢4+1<p then 7,,(S*)=0 it follows that

7 (0(p) =7 (0(p+1))
for all p>¢+1. Suppose the inductive system

e 3 J—



4 Keean Lee, Kwangho So, Wonkee Jeon, Seungho Ahn

O(1) 0B+ )= O(p+2) —rreves
w u v

(A 0) (A 0 0\
A Py b 1 () 1 O) [
01 001

Then, this induces the inductive system

(0 (D)) 7, (0D + 1)) =7 {O(P+2))—>.. .
for all i>0. If /4+1<(p then we have

7 (0P =m, (0P +1)) =m,(0(p+2)) =. ..
and }jgw;(a(m))zm(o(p)).

(ii) Similary, consider the locally trivial fibration

Up)—U@p+D

> SEHRU(p+D/U(P)
([21). From the exact sequence of homotopy groups
vor =Ty (SFF) o 7 (U ()~ 7 (U (0 -+ 1) (¥4 =
if a%.<p then we have
(U =m (U (p+1)).
From the inductive system
r(UN— U+ 1D—...

it p>-% then it follows that
lim (U (m) =2 U @)). ///

For _Iir_n_)n,-(O(m)) and lirzx’ 7,(U(m)) we have the following results ([3]) and Propo-~

sition 1):
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Property 2. (i) If p>»i+1 the

(Z/2, =0 mod 8
1272, =1 mod 8
70 (p)=1limz(O(m)= ' 0 , i=2 mod §
Z , 73 mod 8§
| 0 , 24,57 mod 8.

(i) 1t j")“”lf then

. {0, i=even
7 (U (p)) = lmz (U (m}) = {Z o
L y 7 == O

Proposition 3. The action of 7,(GL,(R))=r,(0(p))=Z/2 on 7, (GL, () ==
z:(0)p)) is trivial if pl>i+-1.

Proof. (i) In case p is an odd. We can put

1 0 -1 0
Zﬁ%mwm»z{<\> < N )}

Recall that for each ac=x,(O(H) and [Fl&m (0(H)

alfl=[acf (x)ea™'] Vye=Si

But it is clear that

-1 0 -1 0\
( N )Of(x)o( N ) =f(x) (%S9
0 1 0
Therefore we have
70 /20D = (0(p))  (pi+1).

(ii) In case p is an even. At first we note that

To(0(p))—— 7 (0(2+1))
W W

o (Y
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is an isomorphism. It follows that for p>7+1

z(0(0))/mo(0(0)) =z, (O(+1))/7e(O(5))
=x(0+1)) /7 (0(p+1))
=x,(0(p+1)) (by (1))
z=x (00)) (by Proposition 1).

Hence 7o(O(p)) (p>i+1) acts on 7,(O(p)) to be trivial. ///
Theorem 4. Ko (S)=Kp(S)=K(S) =0 and R (5% =Z.
Proof. By (B), (C) and Proposition 3

Rp(S"= lim m,,(0(m)/2/22 lim 7.1, (O(m)
and
Ro(S") =limm, (U (m).

On the other hand, by Property 2,

}igm(ﬂ@) =_1§:.‘_‘,”‘(O(m)) = }_i”fgm(U(m)) =0
and
Eg}yﬂrs(U(m))EZ.
Therefore, we get the following:
Rp(S) =R g(89)=R(S*)=0, and Rp(S)=Z. ///
For arbitrary topological spaces X, Y and a continuous function f: X-——Y there
exists the Barratt-Puppe sequence

xLy ¢, sx5f sy

([11), where C, is the mapping cone of / and SX is the reduced suspension of X.
p— 6 e
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In this case we have the exact sequence of K-groups:
Re(SY)— Rp(SX)—> R (C)——> Rp(Y)—> Ro(X) -+ (D)

([21,031,[4D). For f: X-—Y let M, be the mapping cylinder of f, and let i: ¥—
M, be the inclusion. Put

Cf’:M!/i(Y)’
then there is an isomorphism
Re(CHER(Cy) vovvrvvememnsiminininiiin s (E)

Recall that S*/~=~P,(R) where for all xc=S" x~-4x and #>1. Hence there is the
projection p: S"—— P, (R).

Proposition 5. Let f: S*~— P,(R) be defined by the composition

S S?— P, (R)
v v U

x h—> x%r— H(x?)

which is continuous, where

~~, x=(cosB sing, sinBsing, cosp)

¥

= (cos 20 sin2p., sin2@sin2¢, cos 2¢)

Then C,/==P;3(R).
Proof. Note that

(S*X I PR/~ /S*x 1:=C/,
—_— ] e
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where (x,0)(e=S*xO)~f(x)(c=P,(R)). Therefore
¥ SY~v=Py(R)=~Cy,

where 7 is the map denoting as in the following figure:

e S X ]

i ———— ‘\"'w.
L
X 88 S = PY(IR)

./i_,,. s/~ #=Py(IR)

A

.
;T

Theorem 6. K p(ps(R))=Z/2=RK(P:(R)).

Proof. Using the continuous map f in Proposition 5 we have the Barratt-Puppe

sequence
2L PRy Cr 525 s (PR,
From (D)
Re(S(Po(R))—Re(S) - = Ri(Co— > Ka(Po(R) Ko (S?)
is the exact sequence of abelian groups. From (A) since

Kp($%)=0 (F=R or C)
Rp(SH=2/2, Rp(Pu(R))=Z/1
Ro(SH=2Z, R (Po(R))=Z/2

we have the exact sequences
0-—Rp(Cp)-—Z/4--—Z/2 (exact)

and
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0~ Ko(CH~——2Z/2——Z (exact).
Thus Kp(CH=R(C)=Z/2. By (E) we have

RpCO=Rp(C)=R p(0:(R))=Z/2
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