Computations of Some $\widetilde{K}_F(S^n)$ and $\widetilde{K}_F(P_3(\mathbf{R}))^*$

by

Keean Lee, Kwangho So, Wonkee Jeon, Seungho Ahn**

Department of Mathematics, Chonbuk National University,
Chonju (560-756), Korea
**Department of Mathematics, Chonnam National University,
Kwangju (500-757), Korea

In spite of that computing \hat{K} -groups of topological spaces is one of important works in K-theory, to do this is generally very hard. But, the followings have been computed in [2] and [3]:

$$\begin{split} \hat{K}_{R}(S^{0}) &\cong \mathbb{Z} \quad , \quad \hat{K}_{C}(S^{0}) \cong \mathbb{Z} \text{ and } \hat{K}_{R}(P_{2}(R)) \cong \mathbb{Z}/4 \\ \hat{K}_{R}(S^{1}) &\cong \mathbb{Z}/2, \quad \hat{K}_{C}(S^{1}) = 0 \qquad \hat{K}_{C}(P_{2}(R)) \cong \mathbb{Z}/2 \\ \hat{K}_{R}(S^{2}) &\cong \mathbb{Z}/2, \quad \hat{K}_{C}(S^{2}) \cong \mathbb{Z} \\ \hat{K}_{R}(S^{3}) &= 0 \quad , \quad \hat{K}_{C}(S^{3}) = 0 \\ \hat{K}_{R}(S^{4}) &\cong \mathbb{Z} \quad , \quad \hat{K}_{C}(S^{4}) \cong \mathbb{Z} \end{split}$$

$$(A)$$

where Z=the set of integers, R=the set of reals, C=the set of complexes and P_n (R) is the n-dimensional real projective space. Since $P_1(R) \approx S^1$, $\hat{K}_R(P_1(R)) \cong \mathbb{Z}/2$ and $\hat{K}_C(P_1(R)) = 0$.

The purpose of this note is to compute \hat{K} -groups $\hat{K}_F(S^6)$, $\hat{K}_F(S^6)$ and $\hat{K}_F(P_3(R))$, where F = R or C (Theorem 4 and Theorem 6).

Throughout this note by a topological space we mean a connected and compact topological space without any statements. For a topological space X we shall put

 $Vec_F(X)$ = the class of all F-vector bundles over X.

Then.

$$\Phi_F(X) = \operatorname{Vec}_F(X)/\cong$$

is an abelian monoid with the Whitney sum of vector bundles as the acditive operator

^{*} The Present Studies were supported by the Basic Science Research Institute Program, Ministry of Education, 1987.
Received April 30, 1988.

in $\Phi_{\mathfrak{p}}(X)$, where " \cong " means to be isomorphic between vector bundles over X. Let $K_{\mathfrak{p}}(X)$ be the symmetrization ([3]) of the abelian monoid $\Phi_{\mathfrak{p}}(X)$. Then $K_{\mathfrak{p}}(X)$ is abelian and it is called the K-group of X.

Let $\{p\}$ be a topological space consisting of only one point p, and let $X \longrightarrow \{p\}$ be the projection. This projection induces a group homomorphism

$$Z \cong K_F(\{p\}) \longrightarrow K_F(X),$$

whose cokernel is denoted by $\hat{K}_F(X)$ which is called the reduced K-group of X. It follows that

$$K_{\mathfrak{p}}(X) \cong \mathbb{Z} \oplus \hat{K}_{\mathfrak{p}}(X)$$

([2],[3],[4]).

Let $\Phi_{F}^{n}(X)$ be the set of isomorphism classes of F-vector bundles of rank n over a topological space X. Taking the Whitney sum by trivial bundles enables us to define an inductive system of sets such that

$$\Phi_{\mathbb{F}}^0(X) \longrightarrow \Phi_{\mathbb{F}}^1(X) \longrightarrow \ldots \longrightarrow \Phi_{\mathbb{F}}^n(X) \longrightarrow \ldots$$

where $\Phi_F^n(X) \longrightarrow \Phi_F^{n+1}(X)$ is defined by $[E] \longmapsto [E] \oplus [\theta_n] \times [E \oplus \theta_n]$ and θ_n a trivial bundle of rank n over X. If we put

$$\varinjlim_{n} \Phi_F^n(X) = \Phi_F'(X)$$

then we have

$$\hat{K}_{\mathbf{F}}(X) \cong \mathbf{\Phi}_{\mathbf{F}}'(X) \cdots (B)$$

([3],[4]).

On the other hand there is the formula

$$\pi_{n-1}(GL_{\bullet}(F))/\pi_0(GL_{\bullet}(F)) \cong \Phi_n^*(S^n)$$
.

where $GL_{\bullet}(F)$ is the general linear group of degree p over F([2],[3],[4]). Since

$$GL_{\bullet}(R) \approx O(p) \times R^{q} \qquad (q = p(p+1)/2)$$

$$GL_{\bullet}(C) \approx U(p) \times \mathbb{R}^q \qquad (q=p^2),$$

where O(p) = the orthogonal group of degree p over R and U(p) = the unitary group of degree p over C, we have the following:

$$\begin{aligned} \boldsymbol{\phi}_{\boldsymbol{R}}^{b}(S^{n}) &\cong \pi_{n-1}(GL_{p}(\boldsymbol{R}))/\pi_{0}(GL_{p}(\boldsymbol{R})) \\ &\cong \pi_{n-1}(O(p) \times \boldsymbol{R}^{q})/\pi_{0}(O(p) \times \boldsymbol{R}^{q}) \\ &\cong \pi_{n-1}(O(p))/\pi_{0}(O(p)) \end{aligned}$$

and

$$\Phi_C^p(S^n) \cong \pi_{n-1}(U(p))/\pi_0(U(p)).$$

Moreover, since $\pi_0(O(p)) \cong \mathbb{Z}/2$ and $\pi_0(U(p)) = 0$ it follows that

$$\boldsymbol{\phi}_{\boldsymbol{R}}^{\boldsymbol{p}}(S^n) \cong \pi_{n-1}(O(\boldsymbol{p}))/\boldsymbol{Z}/2, \ \boldsymbol{\phi}_{\boldsymbol{C}}^{\boldsymbol{p}}(S^n) \cong \pi_{n-1}(U(\boldsymbol{p})) \ \cdots \cdots (C).$$

Proposition 1. (i) If p>i+1 then $\pi_i(O(p))\cong\pi_i(O(p+1))$, and hence $\lim_{n\to\infty}\pi_i(O(m))\cong\pi_i(O(p))$.

(ii) If
$$p > \frac{i}{2}$$
 then $\pi_i(U(p)) \cong \pi_i(U(p+1))$, and hence $\lim_{n \to \infty} \pi_i(U(n)) \cong \pi_i(U(p))$.

Proof. Consider the locally trivial fibration

$$O(p) \longrightarrow O(p+1) \longrightarrow S^{p} \approx O(p+1)/O(p)$$

where $O(p) \longrightarrow O(p+1)$ is defined by $A(\subseteq O(p)) \longmapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ ([2]). Thus we have the long homotopy exact sequence

$$\dots \longrightarrow \pi_{i+1}(S^p) \longrightarrow \pi_i(O(p)) \longrightarrow \pi_i(O(p+1)) \longrightarrow \pi_i(S^p) \longrightarrow \dots$$

([1]. Since if i+1 < p then $\pi_{i+1}(S^p) = 0$ it follows that

$$\pi_i(O(p)) \cong \pi_i(O(p+1))$$

for all p>i+1. Suppose the inductive system

Keean Lee, Kwangho So, Wonkee Jeon, Seungho Ahn

$$O(p) \longrightarrow O(p+1) \longrightarrow O(p+2) \longrightarrow \cdots$$

$$\emptyset \qquad \qquad \emptyset \qquad \qquad \emptyset$$

$$A \qquad \longleftrightarrow \qquad \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \longmapsto \begin{pmatrix} A & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \longmapsto \cdots$$

Then, this induces the inductive system

4

$$\pi_i(O(p)) \longrightarrow \pi_i(O(p+1)) \longrightarrow \pi_i(O(p+2)) \longrightarrow \dots$$

for all $i \ge 0$. If i+1 < p then we have

$$\pi_i(O(p)) \cong \pi_i(O(p+1)) \cong \pi_i(O(p+2)) \cong \dots$$

and
$$\lim_{n \to \infty} \pi_i(O(n)) \cong \pi_i(O(p)).$$

(ii) Similary, consider the locally trivial fibration

$$U(p) \longrightarrow U(p+1) \longrightarrow S^{2p+1} \approx U(p+1)/U(p)$$

([2]). From the exact sequence of homotopy groups

$$\dots \longrightarrow \pi_{i+1}(S^{2p+1}) \longrightarrow \pi_i(U(p)) \longrightarrow \pi_i(U(p+1)) \longrightarrow \pi_i(S^{2p+1}) \longrightarrow \dots$$

if $\frac{i}{2} < p$ then we have

$$\pi_i(U(p)) \cong \pi_i(U(p+1)).$$

From the inductive system

$$\pi_i(U(p)) \longrightarrow \pi_i(U(p+1) \longrightarrow \dots$$

if $p > \frac{i}{2}$ then it follows that

$$\underset{\longrightarrow}{\lim} \pi_i(U(m)) \cong \pi_i(U(p)). ///$$

For $\lim_{m\to\infty} \pi_i(O(m))$ and $\lim_{m\to\infty} \pi_i(U(m))$ we have the following results ([3]) and Proposition 1):

Property 2. (i) If p>i+1 the

$$\pi_i(O(p) = \lim_{m \to \infty} \pi_i(O(m)) \cong \begin{cases} \mathbf{Z}/2, & i \equiv 0 \mod 8 \\ \mathbf{Z}/2, & i \equiv 1 \mod 8 \\ 0, & i \equiv 2 \mod 8 \\ \mathbf{Z}, & i \equiv 3 \mod 8 \\ 0, & i \equiv 4, 5, 7 \mod 8. \end{cases}$$

(ii) If $p > \frac{i}{2}$ then

$$\pi_i(U(p)) = \lim_{m \to \infty} \pi_i(U(m)) \cong \begin{cases} 0, & i = \text{even} \\ Z, & i = \text{odd} \end{cases}$$

Proposition 3. The action of $\pi_0(GL_p(\mathbf{R})) \cong \pi_0(O(p)) \cong \mathbb{Z}/2$ on $\pi_i(GL_p(\mathbf{R})) \cong \pi_i(O(p))$ is trivial if p > i+1.

Proof. (i) In case p is an odd. We can put

$$\mathbf{Z}/2 \cong \pi_0(O(p)) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$

Recall that for each $\alpha \in \pi_0(O(p))$ and $[f] \in \pi_i(O(p))$

$$\alpha[f] = [\alpha \circ f(x) \circ \alpha^{-1}] \qquad \forall x \in S^i$$

But it is clear that

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \circ f(x) \circ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}^{-1} = f(x) \qquad (x \in S^i)$$

Therefore we have

$$\pi_i(O(p))/\pi_0(O(p)) \cong \pi_i(O(p)) \quad (p>i+1).$$

(ii) In case p is an even. At first we note that

$$\begin{array}{ccc}
\pi_{\mathbf{0}}(O(p)) \longrightarrow \pi_{\mathbf{0}}(O(p+1)) \\
& & & & & & & \\
A & & & & & & \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}
\end{array}$$

is an isomorphism. It follows that for p>i+1

$$\pi_{i}(O(p))/\pi_{0}(O(p)) \cong \pi_{i}(O(p+1))/\pi_{0}(O(p))$$

$$\cong \pi_{i}(O(p+1))/\pi_{0}(O(p+1))$$

$$\cong \pi_{i}(O(p+1)) \qquad \text{(by (i))}$$

$$\cong \pi_{i}(O(p)) \qquad \text{(by Proposition 1)}.$$

Hence $\pi_0(O(p))$ (p>i+1) acts on $\pi_i(O(p))$ to be trivial. ///

Theorem 4.
$$\hat{K}_R(S^6) \cong \hat{K}_R(S^6) \cong \hat{K}_C(S^6) = 0$$
 and $\hat{K}_C(S^6) \cong Z$.

Proof. By (B), (C) and Proposition 3

$$\widehat{K}_{R}(S^{n}) \cong \underset{n}{\underset{n}{\varinjlim}} \pi_{n-1}(O(m))/\mathbb{Z}/2 \cong \underset{n}{\underset{n}{\varinjlim}} \pi_{n+1}(O(m))$$

and

$$\hat{K}_{C}(S^{n}) \cong \underline{\lim}_{n \to \infty} \pi_{n-1}(U(m)).$$

On the other hand, by Property 2,

$$\lim_{m \to \infty} \pi_{\bullet}(O(m)) = \lim_{m \to \infty} \pi_{\bullet}(O(m)) = \lim_{m \to \infty} \pi_{\bullet}(U(m)) = 0$$

and

$$\underset{m}{\underset{m}{\longleftarrow}} \pi_{5}(U(m)) \cong \mathbb{Z}.$$

Therefore, we get the following:

$$\hat{K}_{R}(S^{5}) = \hat{K}_{R}(S^{6}) = \hat{K}_{C}(S^{5}) = 0$$
, and $\hat{K}_{C}(S^{6}) \cong \mathbb{Z}$. ///

For arbitrary topological spaces X, Y and a continuous function $f \colon X \longrightarrow Y$ there exists the Barratt-Puppe sequence

$$X \xrightarrow{f} Y \longrightarrow C_f \longrightarrow SX \xrightarrow{Sf} SY$$

([1]), where C_f is the mapping cone of f and SX is the reduced suspension of X.

In this case we have the exact sequence of \hat{K} -groups:

$$\hat{K}_{F}(SY) \longrightarrow \hat{K}_{F}(SX) \longrightarrow \hat{K}_{F}(C_{f}) \longrightarrow \hat{K}_{F}(Y) \longrightarrow \hat{K}_{F}(X) \cdots (D)$$

([2], [3], [4]). For $f: X \longrightarrow Y$ let M_f be the mapping cylinder of f, and let $i: Y \longrightarrow M_f$ be the inclusion. Put

$$C_f' = M_f/i(Y)$$
,

then there is an isomorphism

$$\hat{K}_{p}(C_{f}) \cong \hat{K}_{p}(C_{f}')$$
(E)

Recall that $S^n/\sim \approx P_n(R)$ where for all $x \in S^n$ $x \sim \pm x$ and $n \ge 1$. Hence there is the projection $p: S^n \longrightarrow P_n(R)$.

Proposition 5. Let $f: S^2 \longrightarrow P_2(R)$ be defined by the composition

which is continuous, where

Then $C_f \approx P_3(R)$.

Proof. Note that

$$(S^2 \times I \cup P_2(R) / \sim / S^4 \times 1 = C_1',$$

where $(x, 0) (\subseteq S^2 \times O) \sim f(x) (\subseteq P_2(\mathbf{R}))$. Therefore

$$\gamma: S^3/\sim = P_3(R) \approx C_{\epsilon'}$$

where η is the map denoting as in the following figure:

Theorem 6. $\hat{K}_R(p_3(R)) \cong \mathbb{Z}/2 \cong \hat{K}_C(P_3(R))$.

Proof. Using the continuous map f in Proposition 5 we have the Barratt-Puppe sequence

$$S^2 \xrightarrow{f} P_2(\mathbf{R}) \longrightarrow C_f \longrightarrow S^3 \xrightarrow{Sf} S(P_2(\mathbf{R})).$$

From (D)

$$\hat{K}_{F}(S(P_{2}(R))) \longrightarrow \hat{K}_{F}(S^{3}) \longrightarrow \hat{K}_{F}(C_{f}) \longrightarrow \hat{K}_{F}(P_{2}(R)) \longrightarrow \hat{K}_{F}(S^{2})$$

is the exact sequence of abelian groups. From (A) since

$$\hat{K}_{R}(S^{3})=0 \ (F=R \text{ or } C)$$

$$\hat{K}_{R}(S^{2})\cong \mathbb{Z}/2, \ \hat{K}_{R}(P_{2}(R))\cong \mathbb{Z}/4$$

$$\hat{K}_{C}(S^{2})\cong \mathbb{Z}, \ \hat{K}_{C}(P_{2}(R))\cong \mathbb{Z}/2$$

we have the exact sequences

$$0 \longrightarrow \hat{K}_{\mathbf{p}}(C_f) \longrightarrow \mathbf{Z}/4 \longrightarrow \mathbf{Z}/2 \text{ (exact)}$$

and

Computations of Some $\tilde{K}_{F}(S^{n})$ and $\tilde{K}_{F}(P_{s}(R))$

$$0 \longrightarrow K_{\boldsymbol{C}}(C_{\boldsymbol{f}}) \longrightarrow \boldsymbol{Z}/2 \longrightarrow \boldsymbol{Z}$$
 (exact).

Thus $\hat{K}_{R}(C_{f}) \cong \hat{K}_{C}(C_{f}) \cong \mathbb{Z}/2$. By (E) we have

$$\hat{K}_{R}(C_{f}) \cong \hat{K}_{R}(C_{f}') \cong \hat{K}_{R}(p_{3}(R)) \cong \mathbb{Z}/2$$

$$\hat{K}_{C}(C_{f}) \cong \hat{K}_{C}(C_{f}') \cong \hat{K}_{C}(p_{3}(R)) \cong \mathbb{Z}/2. ///$$

References

- 1. J.M. Cohen: Stable Homotopy, Springer-Verlag (1970).
- 2. D. Husemollar: Fibre Bundles, Springer-Verlag (1966).
- 3. M. Karoubi: K-Theory (an Introduction), Springer-Verlag (1978).
- 4. Lee: Foundation of Topology, Vol. 2, Hakmoon-Sa (1983).