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THE GROWTH FUNCTION OF TUBES ABOUT GEODESICS

SUNGYUN LEE

1. Introduction

Let M be an n-dimensional Riemannian manifold of class C" and P
a submanifold, possibly with boundary. For s>O let T(P, s) be the set
of points at distance s from P in M. We assume that s is small enough
so that s is not larger than the distance between P and its nearest
focal point. From now on let P be a compact orientable hypersurface.
Denote by A(s) the (n-I)-dimensional volume of the hypersurface
T(P, s) in the direction of a chosen normal. Following Wu and
Holzsager [5J, [6J, we eaU A(s) the growth function of P.

In [6J, it is shown that the two-dimensional Riemannian manifolds
of constant curvature equal to are characterized by the linear differential
equation

(l) A" (s) +cA(s) =0

for all P. Erbacher [2J and Holzsager [5J characterized three-dimen­
sional Riemannian manifolds of constant curvature by the linear
differential equation (of lowest order)

(2) A"' (s) +c2(s)A" (s) +cjA' (s) +co(s)A(s) =0

for all P. Gray and Vanhecke [3J studied also (1) and (2) for a special
class of hypersurfaces which consists of small geodesic spheres. They
strengthened the results of [2J, [5J, [6J using the power series expansion
for the volume of a geodesic sphere. The purpose of the present note
is to show that the technique employing the power series expansion for
the growth function allows us to prove the following more general
theorems. From now on we assume dim M=n>2.
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THEOREM 1. Suppose that for each short geodesic segment aeM and
for all small r>O, the growth function A(s) of each hypersur/ace T(a, r)
satisfies

(3) A" (s) +c(s)A(s) =0,

where c(s) is a function of s. Then M is a space of constant curvature
of dimension 2 or 3. If n=2, then c(s) =K, where K is the sectional
curvature of M: if n=3, then c(s) =4K.

THEOREM 2. Suppose that for each short geodesic segment aeM and
for all small r>O, the growth function A(s) of each hypersurface T(a, r)
satisfies (2). Then M is a space of constant curvature K of dimension
2,3, or 4. If n=2, then either K=co(s) =0 or K=C1 (s) *0, co(s) =
KC2(S); if n=3, then Cl (s) =4K, co(s) =4Kc2(S); if n=4, then K=
C2(S) =C1 (s) =co(s) =0.

2. Preliminaries

For the sake of completeness we recall some definitions and necessary
facts. Let M be an n-dimensional Riemannian manifold with metric
tensor <,). The Riemannian connection 17 and the curvature operator
R of M are given by

2<17x~ Z)=X<Y, Z)+ Y<X, Z)-Z<X, y)-<X, [Y, Z])
-<Y, [X,ZJ)+<Z, [X, YJ),

Rxy =17 [x,x) - [Vx, Vr],

for vector fields X, ~ Z. The components of the curvature tensor will
be denoted by Riikl> 1<i, j, k, l<n, for an orthonormal frame {eh ... , en}
at any point of M. Let p, '" I!PI!, llRll be the Ricci tensor, the scalar
curvature tensor, the length of the Ricci tensor, and the leng,h of the
curvature tensor respectively. Then

n

p",p= "L,R"'TPr,
T=l

n

I!RW= 2::: R~priJ.
""p,T,'=l

Let a: (a, b)---+M be a unit speed geodesic and {eh ... , en} be an
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n

is the volume of Sn-l(I) in Rnand 4=L.17i17i
i=1

orthonormal frame field along a such that d(t)=el(a(t)). In [4J the
following expression is derived for the (n-I)-dimensional volume
V(T(O',r» of T(a,r):

(4) V( T(a, r»

=Wn-lf: {rn-2+Crn+Drn+2+0(rnH)} (a(t) )dt,

where

C=- 1 (+)
6(n-I) -r Pll

and

D= 360(n+ ~)(n-I) (-I8L1-r+5-r
2
+8!1pW-3I1RW

+33171171-r-9L1Pll + lO-rPll +2tP~i+ 14 t pijRliIj
i==2 i, j=2

21t" ~n-I) /2

Here W n-l = r ( (n; 1)

denotes the Laplacian.
Following [4J we put

Am"(r) = lim V(T(O', r»
L'q)-O L(O')

where a is a geodesic in M with a(O) =m, d(O) =x, xE-Mm, IIxll=I,
and L(a) is the length of a. We take the average Am(r) of Am"(r) as
x ranges over the unit sphere Sn-l (1) in Mm. Specifically we put

Am(r)=_l-f Am"(r)dx,
Wn-l S"'O)

where dx is the volume element of sn-l(I). The power series expansion
of Am"(r) appears in (4) as the integrand, and the power series
expansion of Am(r) is given by ([4J)
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where

- n+1C=- 1:
6n(n-l)

and

For a curve a in an n-dimensional space of constant curvature c the
complete formula for V(T(a, r» is given by ([4J)

(
sin ...l-;r )n-2 -(6) V(T(a,r»=wn_ 1 ..; c (cos";cr)L(a).

This fomula includes the cases c=o and c<o as well as c>O by the
usual convention: if c=O, we take the limit as c--+O; if c<O, we apply
the identities cosh ..;=:C cos";c and"; -1 sinh .y'=C=sin";~

Let L= dd and c be a constant. For n>2 we puts -

I
Ln-l if c=O

(7) Ln= (£2+c)(£2+9c) ... (£2+ (n-l)2c) if c:;t:O, n 18 even
(£2+ 4c)(£2 + 16c)···(£2+ (n-1)2c) if c:;t:O, n is odd.

Then we have from (6) the following proposition analogous to the one
in [2J (p. 215).

PROPOSITION 3. Suppose M is an n~dimemsional Riemannian manifold
of constant curvature c. Then the growth function A of each T(a, r),
where a is a small geodesic segment in M and r>O is sufficiently small,
satisfies the linear differential equation

(8)

Furthermore, this is the only linear differential equation of lowest order
that A satisfies for every T(a, r).

3. Proof of Theorem 1

Suppose the growth function A(s) satisfies (3) for each T(a, r).
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A.,"'(r+s) satisfies also (3) for each xEMm, mEM, llxll=l. Then it
is not difficult to see that the average Am(r+s) of Am"'(r+s) satisfies
also (3) for each mEM. We differentiate the power series for Am(r+s)
with respect to s, put the series in (3) and set s=O. In this way we
obtain a power series expansion in r which must be identically zero.
Setting the coefficients of this power series equal to zero we obtain the
following relations:

j
2<n<3
Cn(n-l) +c(O) =0
D(n+2) (n+ 1) +c(O)C=O.

If n=2, then we obtain T(m) =2c(0) for all mEM. Therefore it is
necessary that M has constant curvature c(O). On the other hand from
Proposition 3 c(s) must be a constant function.

If n=3, then we obtain T= ~ c(O) and - ~ T
2+811pIl2-3I1RW=0. Since

a three-dimensional Riemannian manifold satisfies llRIl2=411pW-T2, we
find that lIRW= IIpW. According to a result of Calabi DJ this implies

that M has constant curvature i c(O). On the other hand from Pro­

position 3 c(s) must be a constant function.

REMARK. We have in fact proved the following theorems. It is
obvious that Theorem 4 implies Theorem 5 and Theorem 5 implies
Theorem 1.

THEOREM 4. Suppose that for all small r>O each point mEM satisfies

Am" (r+s) +c(s)A.,(r+s) =0 for small s>O.

Then we have the same conclusion as that of Theorem 1.

THEOREM 5. Suppose that for all small r>O, each xEM." mEM,
IIxll = 1 satisfies

(Am"')" (r+s) +c(s)Am"'(r+s) =0 for small s>O.

Then 'We have the same conclusion as that of Theorem 1.

4. Proof of Theorem 2

We will prove the following theorem which implies Theorem 2.
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THEOREM 6. Suppose that for all small r>O, each xEMm, mEM,
IIxll = 1 satisfies

(9) (AmX)"'(r+s) +C2(S) (Amx)"(r+s)
+cl (s) (Amx)' (r+s) +co(s)Amx(r+s) =0

for small s>O. Then we have the same conclusion as that of Theorem 2.

In the same way as in the above section we obtain the following
three cases:

(l0)

\

n=2,
2C2(0)C+Co(0) =0,
12D+ Cl (O)C=O,
12c2(0)D+co(0)C=0,
30E+Cl(0)D=O,

In=3 {n=4'
6C+~ (0)=0 C2(0) =co(O) =0,
20D+

l
c (O)C~O 24C+2cl(0) =0,

1 '30D+Cl(O)C=0,

where C, D, E are the respective coefficients of rn, rn
+2, r nH in the

power series of Amx(r+s).
In case of n=O we need, first of all, the following expression for

V( T(a, r)), when a: (a, b)-M is a unit speed curve:

where

C=-lK
2 '

D=£4<-N2K + K 2),

and

Here K is the sectional curvature of M and N is the unit normal vector
field on a. We can derive (ll) by the method of Gray and Vanhecke
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[4J. We omit the tedious calculations. Now (IO) and (11) give
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(I2) {
N2K =K2_ C\(0)K,
- N4K+7KN2K +4 (NK)2 - K3=Cl (0) (N2K - K2).

(I0)'

Then straightforward computations show that K=c\ (0)*0 or K=O. In
view of Proposition 3 this leads to the conclusion when n=2.

If n=3, the assumption (9) implies (10) and, of course,

{
6C+C1 (0) =0,
20D +c\ (O)C=O.

According to (10)' we have r= ~ c\ (0) and IIRW= IIpW for all mEM.

This together with Proposition 3 implies that M is a space of constant
curvature K, and Cl (s) =4K, co(s) =4Kc2(S).

Finally when n=4, according to

(IO)' I
C2(Q) =co(O) =0,
24C+2cI(0) =0,
30D +CI (O)C=O,

we obtain r= ~ c\(O) and 8I1pW-3I1RW=~r2. From (IO) we have also

Pii= -r+ ~ Cl (0), 1<i<4. It follows that M is flat. Then Proposition

3 says that C2(S) =CI (s) =co(s) =0. This completes the proof.
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