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A CONSTRUCTIVE PROOF OF THE EXISTENCE OF

GREEN'S FUNCTION ON MANIFOLDS

DONG PyO CHI

1. Introduction

Let M be a complete Riemannian manifold and £1 be the Laplace
operator acting on Coo functions on M. Then the Green's function on M
is a function on Mx M, which satisfies the following properties;

£1"fG(x,y)f(y)dy=-f(x)

and

fG(x, y) £1,f(y) dy= - f(x),

for all smooth functions f with compact support on M. These two
conditions are equivalent to that G (x, y) satisfies the equation

£1"G(x, y) = -0" (y), for all xE:.M.

in distribution sense.
If M is Rn, then the explicit form of G(x,y) is known. But in gener­

al, we can not expect explicit form of Green's function. Also the
positivity of G(x, y) is not guaranteed in general.

In 1955 Malgrange [2J showed that the Laplace operator admits a
symmetric Green's function. But his argument was abstract and non­
constructive. In case M admits a positive non-constant harmonic function,
Yau and Schoen [3J proved that M admits a positive symmetric Green's
function. In particular a complete manifold with lower bounded Ricci
curvature admits a positive Green's function. Recently Li and Tarn [IJ
constructed a Green's function, called a minimal Green's function.
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The purpose of this paper is to give a simplified version of Li and.
Tam's proof on the exitence of Green's function on a complete Riema­
nnian manifold. That is, we are going to give another proof of the
following theorem.

THEOREM. Let M be a complete non-compact Riemannian manifold.
Then there exists a Green's function on M.

2. Proof of the exitence of Green's function

Let M be an n-dimensional complete noncompact Riemannian manifold
without boundary. Consider a fixed point PEM and a monotone sequence
of compact subdomains, Qi, which exhaust M. That is to say,

and UQi=M.

For each i, we let Gi(x, y) to be the symmetric Green's kernel on
Q; which satisfies the Dirichlet boundary condition. It is known that
G; (x, y) must behaves like

G;rvC(n)r(x, y)2-n, as y~x, when n>2,

and G;(x,y)rvC(2) logr(x,y), as x~y, when n=2.
The costants C(n) only depend on n, the dimension of M, and the

function r(x, y) denotes geodesic distance between x and y. The following
lemma in Li and Tam Cl] is essential in the proof

LEMMA. Let p be a fixed point in M. The sequence of Green's functions
Gi (p, y) must have uniformly bounded oscillations in any compact subset K
of M - p, for sufficiently large i's such that Qi~K.

Now we give our proof of the exitence of Green's function on a
complete non-compact Riemannian manifold without boundary.

Proof. Let us define

l;(r) =inf {G;(p, y) \yEoBp(r)}

and

Si(r) =sup {Gi(p, y) !yEoBp(r)}.

Let us denote li (l) by a;, By the lemma, for any given R>1, there
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exists a constant w such that if i is sufficiently large then

Applying the maximum principle, we have

-W<fi(P,y)<W, on Bp(R)-Bp( ~ )

where fi(P,y)=Gi(P,y)-ai.
Hence the fi(P, y)'s are uniformly bounded on compact subsets of M­

p, and there is a subsequence of the f;'s which converges uniformly on
compact subsets of M - p.

Let x be a point in M, which is different from p. We are going to
show that fi(X, y) as a function of y also converges on compact subsets
of M-p.

As our previous argument, any subsequence of the Gi(x, y)'s contains
a subsequence denoted by Glx, y) and a set of non-negative numbers
b/ s such that the sequence

converges, Now, we show that we could take b/s as a/s, which implies
that fi(X,y) as a function of y converges on compact subsets of M-p.

Since fi (p, y) converges to a function G (p, y) implies that

G(p, x) =lim fi(P, x) =lim{Gj(p, x) -aj}
i-OO j-OO

Hence the last limit must also converge to a constant c. Now clearly
the subsequence

must also converge to some function J(x,y). To show that the original
sequence

fi(X, y) =Gi(x, y) -ai

converges, it suffices to prove that if there is another converging subsequ­
ence
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Gk(X, y) -ak

then it must converge to J(x, y), Let us denote the limit by

The difference of the two functions G(p,y) and K(x,y) as functions of
y must be bounded on M-Bp(R) if xEBp(R). In fact, let us consider
the formula

Due to the fact that Gk satisfies Dirichlet boundary condition, after
applying the maximum principle, we have

sup {IG(p,y) -K(x, y) 11 YEM-Bp(R)}
<sup (I G(p, y) - K(x, y) 11 yEoBp(R)} ,

which is bounded by the compactness of oBp(R) and the assumption that
xEBp(R). By the same argument, the difference of G(p,y) and J(x,y)
is also a bounded function on M-Bp(R). Hence the function

J(x, y) -K(x, y)

must also be bounded on M-Bp(R). On the other hand, in view of the
previous argument, we may assume that

where c is a constant. Therefore

H 2R (X, y) =c<Gk(x, y) -ak+O<H2R (X, y) +c+20,

with H 2R being the Dirichlet Green's function on B",(2R) and () is the
bound for the oscillation of the Gk's restricted on B",(2R) -B",(l).
Passing to the limit we conclude that K(x, y) must behave like Green's
function. Hence their difference J(x, y) - K(x, y) is a bounded harmonic
function on Bp(R), therefore also a bounded harmonic function on M.
The fact that there is no non-constant harmonic function on M now
implies that J (x, y) - K (x, y) is identically constant on M. Evaluating
at y=p,
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which implies that J(x, y) =K(x, y) for all yEM.
This completes our proof.
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