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EXTENSIONS OF THE CUNTZ ALGEBRAS RELATIVE

TO A SEMIFINITE DECOMPOSABLE FACTOR*

SUNG JE CHO AND SA GE LEE

1. Introduction

In 1909, H. Weyl showed that every self-adjoint operator on a
separable infinite dimensional Hilbert space:;e-::' is a diagonal plus
compact. In 1935, von Neumann proved that two self-adjoint operators
on :;e-::' are unitarily equivalent up to compacts if and only if
they have the same spectrum up to isolated eigenvalues of finite
multiplicity. Then Berg and Sikonia extended this result to normal
operators.

Let 2"" (:;e-::') be the algebra of all bounded linear operators on :;e-::',
%(:;e-::') the two-sided ideal of compact operators, Q(:;e-::') the quotient
algebra 2"" (:;e-::') / % (:;e-::') , and 1C the canonical homomorphism of 2""
(:;e-::') onto Q(:;e-::'). An operator N is called essentially normal if 1C(N)
is normal in Q(:;e-::'). Note that for normal operator N the spectrum of
1C(N) in Q(:;e-::') is the same as the spectrum of N in 2""(~) minus
eigenvalues of finite multiplicity. Thus one would hope that two
essentially normal operators NI and N2 are unitarily equivalent up to
compacts if and only if 1C(N1) and 1C(N2) have the same spectrum in
Q(:;e-::'). But this is not so in general.

Brown, Douglas, and Fillmore(BDF for short) [3,4J proved that
Fredholm index data is a complete invariant for the classification of
essentially normal operators. In doing so, BDF found a beautiful theory,
the so-called BDF theory, which connects the operator theory on the
one end and the seemingly unrelated algebraic topology on the other
end. BDF theory has been generdlized to non-commutative C*-algebras
by many authors.

Received August 5, 1988, in revised form September 19, 1988.
* Supported by Ministry of Education, 1987.

- 197-



198 Sung le Cho and Sa Ge Lee

It is well-known that a semifinite decomposable von Neumann factor
has very similar properties with .Sf? (d'C'). In fact, some of BDF theory
has been extended to this context [5, 8, 9, 12]. In this note we study
the unitary equivalence classes of unital *-monomorphisms of the Cuntz
algebra to the generalized Calkin algebra of a semifinite decomposable
von Neumann factor.

2. Preliminaries

Let 1 be a semifinite factor acting on a separable Hilbert space
d'C'. An operator P is called projection if it is a self-adjoint idempotent,
i.e. P=P*=P2. An operator U is called partial isometry if both u*u
and Uu* are projections. For partial isometry U, u*u and UU* are
called the initial projection and final projection of U, respectively. Two
projections P, Q in 1 are equivalent if there exists a partial isometry
U in 1 such that p=u*u and Q=UU*. Then it is routine to check
that this is indeed an equivalence relation on the set of all projections
.9(1) of 1. The equivalence of two projections P and Q will be
denoted by P"'Q. A projection P in 1 is finite if no proper subpro­
jection of P is equivalent to P. A projection is infinite if it is not finite.
Hence a projection P is infinite if and only if there exists a proper
subprojection pI which is equivalent to P. There exists a nonnegative
extended real-valued function on .9(1) which resembles the usual
dimension function of Hilbert spaces. More precisely, there is a function
dim on .9(1) with range [0, ex>J such that

( i) P"'Q if and only if dim(P) =dim(Q)
(ii) if P and Q are orthogonal, then dim(P+Q) =dim(P) +dim(Q)
(iii) P is finite if and only if dim (P) <ex>
(iv) P is infinite if and only if dim(P) =ex>.

We mention that such a dimension function on .9(1) is unique up
to constant multiples.

Let %(1) be the norm-closed two sided *-ideal of 1 generated
by all finite projections of 1. This closed ideal %(1) resembles
in many respects the usual compact ideal of the algebra.Sf? (d'C')
of all bounded linear operators on d'C'. This ideal % (1) is the
only non trivial closed two sided ideal of 1. Let 7l: denote the
canonical homomorphism of 1 onto 1/%(1). We now briefly
describe Fredholm operator relative to 1 and its associated relative
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index. These generalization to semifinite factor context was mainly done
by Breuer. Details can be found in [1, 2].

An operator T in 1 is Fredholm relative to 1 if the projection
on its null space is finite and if there exists a cofinite projection in 1
with range contained in T(::J'P). Then we have the following genera­
lization of Atkinson's Theorem due to Breuer [1,2J.

THEOREM A. An operator T in 1 is Fredholm relative to .L if and
only if neT) is invertible in 1/%(1).

Let NT denote the null projection of Tin 1. For Fredholm operator
T in 1, both dim(NT) and dim(NT*) are finite. Hence we can define

indm ( T) =dim(NT) -dim (NT*)

for Fredholm TE1.
Since dimension function on 1 is unique up to constant multiples,

so is index function. For details of index map, see [1,2,10].
We now consider extensions of C*-algebras by the generalized compact

ideal %(1). Let J¥ be a C*-algebra. Consider extension of the
form of short exact sequence

0-%(1)-?5'-J¥-0.

Such an extension of J¥ by %(1) is equivalent to a *-homomor­
phism

DEFINITIONS. (i) An extension is a unital *-monomorphism T : J¥
-1/%(1).

(ii) An extension T is trivial if 7: can be factored through 1, that is,
if there exists a unital *-homomorphism (1 : J¥-1 such that T=T°(1.

(iii) The sum of two extensions Tl and T2 is the extension defined as
follows:

(TIEf)T2) (x) = (Tl~X) T2~X) )E12(1/%(1)):::::1/%(1)

for all xEJ¥.
(iv) Two extenions Tl and T2 are unitarily equivalent if there exists a

unitary UE1 such that for all xEJY'
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'r2(X) =n(U)*'r1 (x)n(U).

(v) Two extensions 'rl and 'r2 are equivalent if theire exist trivial
extensions 1>1 and 1>2 such that 'r1EB1>1 and 'r2EB1>2 are unitarily equivalent.

Let Extfil' (J41") denote the equivalence classes of all extensions of J41".
Then obviously Extfit'(J41") forms a semi-group with equivalence class of
trivial extensions as the zero element. Moreover, if J41" is a separable
C*-algebra, then by Choi-Effros's Lifting Theorem [6J Extfil'(J41") is a
group.

THEOREM B. Let J41" be a separable nuclear C*-algebra. Then
Extfil'(J41") is an abelian group.

We close this section with a couple of comments on the extension
group relative to 1. First of all, trivial extensions of the classical
compact ideal are all unitarily equivalent. But it is not clear whether
trivial extensions of the generalized compact ideal % (1) are all
unitarily equivalent. Elliott and Takemoto[8J showed that for AF
algebras all trivial extensions are unitarily equivalent. The above
definition of stable equivalence relation was due to Skandalis [12]. It is
of some interest to determine the dependence of the extension group
Ext~ with respect to semifinite factor 1.

3. The Main Results

Cuntz [7J studied the C*-algebra 0" generated by isometries Si on

"d'F with LSiSi*= 1 for natural number n. If n is infinite, 0<0 is the
i=l

"C*-algebra generated by infinite number of isometries with LSiS;*& 1
;=1

for all natural number n. Among other things, he showed that the C*­
algebra 0" is independent of the isometries SI> ••., S".

Pimsner and Popa [l1J computed the extension group Ext 0". In this
section with use of generalized Fredholm index and similar technique of
liftings as in [l1J we compute the extension group Ext..4f;C" relative to
a semifinite factor 1.

We begin with the following Lemma.

LEMMA 1. Let u be an isometry in 11%(1) and P a projection
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in .At' with 11: (P) =uu*. Then there exists a partial isometry U in 1
such that 11:(U) =u and UU*~P.

Proof. Choose X in 1 with n(X) =u. Since n(PX) =n(P)n(X) =
uu*u=u, we may assume that the range of X is contained in PJ:'C'.
Let X=U(X*X)1I2 be its polar decomposition. Then both U and
(X*X) 112 are in 1. Since n«X*X)I/2)=(n(X*X»1/2=(u*u)I/2
=1, we have n(X) =n(U). Furthermore, since the range of U is
contained in PJ:'C', UU*~P. Thus U is a partial isometry with the
desired properties.

DEFINITION. Let P be a projection in..£. Let U be a partial isometry
in 1 with UU*~P, n(UU*) =n(P), and n(U*U) =1. Then the
relative index, ind(U, P), of U with respect to P is the number

ind(U, P) =dim(I - U*U) -dim(P- UU*).

LEMMA 2. Let U and P as above in Definition.
( i) If ind (U, P) = 0, then there exists an isometry V in ..£ with

n(V) =n(U) and VV*=P.

(ii) If ind(U, P) <0, then there exists an isometry V in 1 with

ind(U, P) = -dim(P- VV*)

(iii) If ind(U, P) >0, then there exists a coisometry V with

ind(U, P) =dim (1- v*V).

Proof. (i) Since ind(U, P) =0, dim (I - U*U) =dim(P- UU*). There­
fore two projections 1-U*U and P- UU* are equivalent. Hence there
is a partial isometry U in 1 with U*U=l-U*Uand iJU*=P-UU*.
Thus U is in .%(..£) and n(U+U) =n(U). Thus U+iJ is an isometry
with the desired property.

(ii) Since ind (U, P) <0, dim (1- U* U) <dim (P - UU*). Hence there
exists a subprojection Q of P such that 1- U*U",Q<P- UU*. Take a
partial isometry U with U*U=l-U*U and UU*=Q. Then U+U is an
isometry with the desired property.

(iii) It can be proved similarly as (ii).

LEMMA 3. Let S1> ..., Sn be isometries in 1/.%(1) with SISI*+···
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+SnSn*=l. Let Ph "',Pn be projections in 1 with P 1+P2+···+Pn=1
and n(Pi) =SiSl* for i=l, 2, "', n. Let S10 "., Sn be partial isometries in
1 with n(Si)=si and SiSi*~Pi for i=1,2,···,n. 1hen ind(Sh P l) +
ind (S2' P 2) +...+ind (Sn, P n) is independent of the choices of Si and Pi.

Proof. Let Ui be isometries with UiU;*=P;. Then ind(S;, Pi) = -ind
(U;SI*) , relative index considered as an operator on P;~. Therefore

tind(S;, Pi) = - I:;ind(U;S;*) =ind(I:;U;S;*).
i=l i=l i=l

Let T;, Q; be isometries and projections with the stated condition,
respectively. Then ind(T;, Q;) =-ind(U;, T;*), relative index considered
as an operator from Q;~ to P;~, i.e., ind(U; T;*) =dim(Q;-Nu,T,*)
-dim(P;-NT,u,*). Since

n (U1S1* + .. , + UnSn*) =n(U1)n(SI*) + '" +n (Un)n(Sn*)
=n(Ur)n( T r*) + ... +n(Un)n( T n*) =n (UrT r*+ ... + Un T n*),

n n

we have ind(L;U;S;*)=ind(L;U;Ti*).
i=l i=l

Hence I:;ind(S;, Pi) = -ind
i=l

n n n
(L;U;S;*) = -ind(I;Ui Ti*) = L;ind( Ti, Qi), which completes the proof.
i=1 ;=1 ;=r

Let T; be isometries in Cn with TrTr*+···+TnTn*=l. Let s; be
isometries in 1/%(1) with SISI*+···+SnSn*=l. Then by sending
T; to s; we have a unital *-monomorphism from On to 1/.%(1),
and vice versa. Thus by examining liftings of s; to 1 we can determine
the extension group Ext.AfCn. "_

THEOREM 1. For each natural number n, the extension group of the
Cuntz algebra C nis isomorphic to the additive group R of all real numbers.

Proof. Let 1: : t!7n-1/'%(1) be a unital *-monomorphism. By
repeating Lemma 1, we can find S/sand P;'s in 1 such that n (S;) =

1:(Ti), n(P;) = (TiTi*), and SiSi*~Pi. Then defiine

0(1:) = ind(Sr, PI) + ... +ind(Sn, P n).

n
By Lemma 3, ::E ind(Si' Pi) is independent of choices of Si and Pi.

;=1

Also, it is easy to see that if 1: and 1:' are unitarily equivalent then 0(1:)
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=fJ(-r/). Also note that if S;S/=P; and S;*S;=1 then ind(S;, Pi) =0.
Hence fJ(7:) =fJ(7:+7:o), where 7:0 is a trivial extension. Thus fJ is a
well-defined homomorphism from Ext.;tt&" to R. Now suppose that ()(7:)

=0. Then with help of Lemma 2 and Lemma 3 by adding and subtracting
finite projections if necessary we may assume that ind(Si, Pi) =0 for all
i=1,2, "', n. Then by Lemma 2(i), 7: is a trivial extension. Hence [r]
=0. To prove the surjectivity of (), for any real number r choose a
partial isometry SI and a projection PI such that ind(Sh PI) =r. Then
for i=2, .'., n choose isometries Si and projections Pi such that S;Si*=
P; and PI + P 2+ ... + P" = 1. Let 7: be the extension determined by sending
T; to 7I:(S;). Then by construction ()(7:) =ind(Sh PI) =r. Thus () is an
isomorphism of Ext.;ttO'" onto R.

Next we compute the extension group of &., relative to semifinite
factor ...L.

LEMMA 4. For i=1,2, ... let s; be isometries in 1/%(1) with

"I:;s;s;*;;;;;1 for all n. Then there exist isometries S; in 1 with 71: (Si) =Si
;=1

"and I:;S;S;*~n for all n.
;=1

Proof. Choose isometry SI in 1 with 71: (SI) =SI and 1-S1S1* infinite

"projection. Suppose SI. ' .., S" have been chosen so that 71: (S;) =S;, I:;S;S;*
;=1

"<1, and 1- :ES;S;* infinite. Then by Lemma lone can choose an
;=1

isometry S"+1 in 1 with 7I:(S"+1)=S,,+I. S"+lS'l:+1~1-(S1S1*+···+S"

S,,*) , and 1-S"+lS~+1 infinite. This completes the proof.

THEOREM 2. The extension group of the Cuntz algebra &., is trivial,
that is, Ext.;ttO'.,= {0}.

Proof. Let 7: : &.,--+1/%(1) be any extension. Then by Lemma
4, isometries 7:( T i ) can be lifted to isometries S; in 1. Let (J be the
*-isomorphism determined by sending T; to Si. Then by construction
'4 = 7I: 0 (J. Hence '4 is trivial. This completes the proof.
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