NOTES ON QUASI-ANALYTIC FUNCTIONS

S.S. KIM AND K.H. KWON

0. Introduction

Let Ω be an open set in R^1 , which is assumed to be connected for simplicity. A function $f \in C^{\infty}(\Omega)$ is (real-) analytic if for any point x_0 in Ω , Taylor series expansion of f at x_0 converges to f in a neighborhood of x_0 . Let us denote by $A(\Omega)$ the class of analytic functions in Ω . Analytic functions have the uniqueness property: if $f \in A(\Omega)$ is such that $f^{(n)}(x_0) = 0$, $n \ge 0$, at some point $x_0 \in \Omega$, then f must vanish identically in Ω . Among other things, it implies that there is no nontrivial function in $A(\Omega)$ with compact support so that we cannot localize the analysis in analytic category. Certainly, the uniqueness property does not hold in general in C^{∞} -category. However, there are subclasses of $C^{\infty}(\Omega)$ other than $A(\Omega)$ which have the uniqueness property. They are quasi-analytic classes $C^{M}(\Omega)$ (cf. Definition 1.1 and Theorem 1.1), where $M=(M_n)_0^{\infty}$ is a sequence of positive numbers satisfying Denjoy-Carleman condition. In this note, we shall first give a simple proof of characterization of quasi-analytic classes $C^{M}(\Omega)$ based on the existence of cut-off functions and then free the notion of quasi-analyticity from the tie with the given sequence $M=(M_n)_0^{\infty}$ of positive numbers.

1. The classes $C^{M}(\Omega)$

First, let us recall the following well known characterization of analytic functions.

LEMMA 1.1. For any $f \in C^{\infty}(\Omega)$, the following two statements are equivalent:

- (a) $f \in A(\Omega)$.
- (b) For any compact set K in Ω , there are positive constants $C_0 = C_0(K, f)$ and $C_1 = C_1(K, f)$ such that

Received May 18, 1988.

Partially supported by KOSEF.

(1.1)
$$\sup_{x} |f^{(n)}(x)| \leq C_0 C_1^n n!, \quad n \geq 0.$$

Let $M=(M_n)_0^{\infty}$ be a sequence of positive numbers, which we assume only for simplicity (cf. $\lceil 2, 3 \rceil$) is such that

$$(1.2)$$
 $M_0=1$

$$(1.3) M_n^2 \leq M_{n-1} M_{n+1}, n \geq 1.$$

DEFINITION 1.1. Let $C^{M}(\Omega)$ be the set of all functions f in $C^{\infty}(\Omega)$ such that for any compact set K in Ω , there are positive constant C_0 $=C_0(K,f)$ and $C_1=C_1(K,f)$ such that

(1.4)
$$\sup_{K} |f^{(n)}(x)| \leq C_0 C_1^{n} M_n, \quad n \geq 0.$$

The class $C^{M}(\Omega)$ is called to be quasi-analytic if it has the uniqueness property. If then, we call functions in $C^{M}(\Omega)$ to be quasi-analytic of class M.

When M=(n!), we get just $C^{M}(\Omega)=A(\Omega)$. In W. Rudin [4], when $\Omega = R^1$, he requires the estimate (1.4) to hold globally on R^1 , which is too much restrictive since if then, the function f(x) = x, for example, can not be in $C^{M}(R^{1})$ for any M. For the simple proof of the following characterization of quasi-analytic classes, we refer to [2].

THEOREM 1.1. (Denjoy and Carleman [1]) The following statements are all equivalent.

(a) $C^{M}(\Omega)$ is quasi-analytic.

(b)
$$\sum_{1}^{\infty} M_n^{-1/n} = \infty$$

(b)
$$\sum_{1}^{\infty} M_{n}^{-1/n} = \infty$$
.
(c) $\sum_{1}^{\infty} M_{n-1}/M_{n} = \infty$.

Now, we shall give another criterion for $C^{M}(\Omega)$ to be quasi-analytic. To be precise, the class $C^{M}(\Omega)$ is quasi-analytic if and only if it has no non-trivial function with compact support. In fact, we shall prove the following which showes that there is a partition of unity subordinate to any open covering of Ω if $C^{M}(\Omega)$ is not quasi-analytic.

THEOREM 1.2. The following statements are all equivalent. (a) $C^{M}(\Omega)$ is not quasi-analytic.

- (b) $C^{M}(\Omega)$ has a non-trivial function with compact support.
- (c) For any compact set K in Ω , there is a function ϕ which has a compact support in Ω and is identically equal to 1 on K.

It is trivial that the statements (b) or (c) implies (a) by the definition of quasi-analytic class. To show the other implications, let us note first that the quasi-analyticity depends only on the sequence $M=(M_n)$ but not on the domain Ω involved by the Denjoy-Carleman theorem.

LEMMA 1.2. The class $C^{M}(\Omega)$ is closed under pointwise multiplication of functions.

Proof. It follows immediately from the Leibnitz rule for differentiation and the logarithmic convexity of the sequence $M=(M_n)$, i.e., (1.3).

To see that (a) implies (b), we first assume that $\Omega = R^1$ and that $C^{M}(R^{1})$ is not quasi-analytic. Then there is a function $f \in C^{M}(R^{1})$, not identically 0, but $f^{(n)}(x_0) = 0$, $n \ge 0$, at some point x_0 in R^1 . Since $C^{M}(R^{1})$ is invariant under any affine transformation, we may assume that $x_0=0$ and f(z)=0 for some z>0. Define g(x) on R^1 by setting g(x)=f(x) for $x\geq 0$ and g(x)=0 for x<0. Then $g\in C^{M}(R^{1})$ has its support in $[0,\infty)$ and $g\neq 0$. Then the function h(x)=g(x)g(2x-x)satisfies the requirements in (b). That is, (a) implies (b) when Ω = R^1 . For an arbitrary open set Ω in R^1 , choose a function $f \in C^M(R^1)$, not identically 0, which has a compact support in R^1 . We may assume by a suitable affine transformation that f has its support in Ω . Then f is in $C^{M}(\Omega)$. Finally, let us show that (b) implies (c). Assuming (b), we can choose a function f in $C^{M}(\mathbb{R}^{1})$, not identically 0, which has its support in $B = \{x \in \mathbb{R}^1 \mid |x| \le 1\}$. Let us set $g(x) = f^2 / \int_{\mathbb{R}^1} f^2 dx$. Then $g \in C^{M}(R^{1})$ is such that $g(x) \geq 0$, $g \neq 0$, supp $g \subseteq B$ and $\int_{\mathbb{R}^{3}} g(x) dx$ =1. Let K be any compact subset of Ω and choose a number $\varepsilon > 0$ so small that $|x-y| \ge 4\varepsilon$ for $x \in K$ and $y \notin \Omega$. Let u(x) be a characteristic function of $K_{2\varepsilon} = \{y \in \mathbb{R}^1 | |y-x| \le 2\varepsilon \text{ for some } x \in K\}$. Let us define a function ϕ on R^1 by

$$\phi(x) = u * g_e$$

where $g_{\epsilon}(x) = \frac{1}{\epsilon} g(x/\epsilon)$.

Then $\phi \in C^{\infty}(\Omega)$ has its support in $K_{3\varepsilon}$ and is identically equal to 1 on K_{ε} . Lastly, we have $\phi \in C^{M}(\Omega)$ since for any x in Ω and any integer n > 0

$$|\phi^{(n)}(x)| = |u*g_{\varepsilon}^{(n)}| \leq \varepsilon^{-n} \int_{B} |g^{(n)}| dx \leq (C_0\pi) (C_1\varepsilon^{-1})^n M_n$$

where $C_0 = C_0(B, g)$ and $C_1 = C_1(B, g)$. It completes the proof of Theorem 1.2.

When the class $C^{M}(\Omega)$ is not quasi-analytic, the construction of partition of unity consisting of functions in $C^{M}(\Omega)$ subordinate to any open covering of Ω is now a straightforward generalization of the one in C^{∞} -category by the part (c) of Theorem 1.2. Thus for any non quasi-analytic class $C^{M}(\Omega)$, one can take the space of functions in $C^{M}(\Omega)$ with compact support as a space of test functions. With a suitable locally convex topology on it, C. Roumieu [3] developed the theory of generalized distributions, which is very much parallel to that of the usual distributions by L. Schwartz.

2. Quasi-analytic functions

Let us note that unlike quasi-analyticity, analyticity can be defined first for individual functions in Ω and then they form a subclass $A(\Omega)$ of $C^{\infty}(\Omega)$. It is a simple matter to free the notion of quasi-analyticity from the tie with the connection with the given sequence $M=(M_n)$ of positive numbers. We may simply call a subclass S of $C^{\infty}(\Omega)$ to be quasi-analytic if S has the uniqueness property. Let $Q(\Omega)$ be the union of all quasi-analytic subclasses of $C^{\infty}(\Omega)$. Then a function $f(x) \in C^{\infty}(\Omega)$ is in Q(Q) if f is either identically equal to 0 or nowhere flat in $\Omega(f(x) \in C^{\infty}(\Omega))$ is flat at $x_0 \in \Omega$ if $f^{(n)}(x_0) = 0$, $n \ge 0$. Let us consider the function $f(x) = e^{-1/x} + 1$ for x > 0 and = 1 for $x \le 0$. Then f is in $Q(\Omega)$ but f(x)-1 and f'(x) are not in $Q(\Omega)$. That is, the class $Q(\Omega)$ is invariant neither under the translation nor under the differentiation. In order to remedy such a unnaturalness let us note that the class $C^{M}(\Omega)$ is invariant under the perturbation of any polynomial since we may require the estimate (1,4) to hold for large n only without changing the class $C^{M}(\Omega)$ itself. Thus we have:

LEMMA 2.1. The class $C^{M}(\Omega)$ is quasi-analytic if and only if any function $f(x) \subseteq C^{M}(\Omega)$ is either a polynomial or f(x) + p(x) is nowhere

flat in Ω for any polynomial p.

Proof. Necessity: If $f \in C^{M}(\Omega)$ is a polynomial, then there is nothing to prove. So, we assume that f is not a polynomial and f+p is flat at some point x_0 in Ω . Then f+p must be identically 0 in Ω since $C^{M}(\Omega)$ is quasi-analytic. It's a contradition. Sufficiency: If a function $f \in C^{M}(\Omega)$ is flat at some point x_0 in Ω , then it must be a polynomial and so be identically 0 in Ω .

It is trivial that the condition in Lemma 2.1 is equivalent to that for any $f(x) \in C^{M}(\Omega)$, we have either $f^{(n)}$ is identically 0 for some $n \ge 0$ or $f^{(n)}(x)$ is nowhere flat in Ω for all $n \ge 0$. It thus leads to the following definition:

DEFINITION 2.1. A function $f(x) \in C^{\infty}(\Omega)$ is quasi-analytic in Ω if either $f^{(n)}(x)$ is identically 0 for some $n \ge 0$ or $f^{(n)}(x)$ is nowhere flat in Ω for all $n \ge 0$. Let $QA(\Omega)$ be the set of all quasi-analytic functions in Ω .

By definition, the class $QA(\Omega)$ of quasi-analytic functions is now invariant under the differentiation and the perturbation by any polynomial. It's a proper subclass of $C^{\infty}(\Omega)$ which contains $A(\Omega)$.

For example, any function $f \in C^{\infty}(\Omega)$ such that the radius of convergence of its Taylor series at any point of Ω is 0 belongs to $\Omega A(\Omega)$ for if $f^{(n)}(x)$ is flat for some $n \ge 0$ at some point x_0 in Ω , then its Taylor expansion at x_0 has only finitely many terms, which is a contradiction.

References

- 1. T. Carlemann, Les fontions quasi-analytiques, Gauthier-Villars, 1926.
- L. Hörmander, The analysis of linear partial differential operators, Vol. 1, Springer-Verlag, 1983.
- 3. C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. Ecole Norm. Sup., 77(1960), 41-121.
- 4. W. Rudin, Real and complex analysis, 3rd edition, McGraw-Hill, 1983.

KAIST P.O. Box 150, Cheongryang Seoul 130-650, Korea