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NOTES ON QUASI-ANALYTIC FUNCTIONS

S.S. KIM AND K.H. KWON

o. Introduction

Let Q be an open set in RI, which is assumed to be connected for
simplicity. A function fEC""(Q) is (real-) analytic if for any point Xo
in D, Taylor series expansion of f at Xo converges to f in a neighbor­
hood of xo. Let us denote by A(D) the class of analytic functions in
Q. Analytic functions have the uniqueness property: if fEA(D) is such
that j<n) (xo) =0, n>O, at some point xoEQ, then f must vanish
identically in Q. Among other things, it implies that there is no non­
trivial function in A(Q) with compact support so that we cannot localize
the analysis in analytic category. Certainly, the uniqueness property
does not hold in general in COO-category. However, there are subclasses
of C""(Q) other than A(Q) which have the uniqueness property. They
are quasi-analytic classes CM (Q) (cf. Definition 1. 1 and Theorem 1. 1),
where M= (Mn)O' is a sequence of positive numbers satisfying Denjoy·
Carleman condition. In this note, we shall first give a simple proof of
characterization of quasi-analytic classes CM (Q) based on the existence
of cut-off functions and then free the notion of quasi-analyticity from
the tie with the given sequence M= (Mn); of positive numbers.

1. The classes CM (Q)

First, let us recall the following well known characterization of
analytic functions.

LEMMA 1. 1. For any fECoo(D), the following two statements are
equivalent:

(a) fEA(D).
(b) For any compact set K in Q, there are positive constants Co=

Co(K,f) and C1=C1(K,f) such that
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(1. 1)
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Let M= (Mn)(j be a sequence of positive numbers, which we assume
only for simplicity (cf. [2,3J) is such that

(1. 2)
(1. 3)

M o=l
Mn2<Mn_IMn+h n>l.

DEFINITION 1.1. Let CM(Q) be the set of all functions f in Cc:,(Q)
such that for any compact set K in Q, -there are positive constant- Co
=Co(K,f) and CI=CI(K,f) such that :-

(1. 4)

The class CM (Q) is called to be quasi-analytic if it has the uniquen~ss
property. If then, we call functions in CM(Q) to be quasi-analytic of
class M.

When M=(nD, we get just CM(Q)=A(Q). In W. Rudin[4], when
-Q=Rl, he requires the estimate (1. 4) to hold globally on RI, which
is too much restrictive since if then, the function f(x) =x, for example,
can not be in CM (RI) for any M. For the simple proof of the following
-characterization of quasi-analytic classes, we refer to [2J.

THEOREM 1.1. (Denjoy and Carleman [1]) The following statements
are all equivalent.

(a) CM(Q) is quasi-anaiytic.
00

(b) :EMn-Iln=oo.
I

00

(c) :EMn--J!Mn=oo.
1

Now, we shall give another criterion for CM(Q) to be quasi-analytic.
To be precise, the class CM(Q) is quasi-analytic if and only if it has
no non-trivial function -with compact support. In fact, we shall prove
the following which showes that there is a partition of unity subordinate
to any open covering of Q if CM(Q) is not quasi-analyt~c.

THEOREM 1. 2. The following statements are- all-equIvalent.;
(a) CM(Q) is not quasi-analytif. - - __
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Cb) CAfe!!) Ms a non-trivial function with compact support.
(c) For any compact set K in [J, there is a function cjJ which has a

compact support in [J and is identically equal to 1 on K.

It is trivial that the statements (b) or (c) implies (a) by the definition
of quasi-analytic class. To show the other implications, let us note first
that the quasi-analyticity depends only on the sequence M = (Mn ) but
not on the domain [J involved by the Denjoy-Carleman theorem.

LEMMA 1. 2. The class CM (!!) is closed under pointwise multiplication
of functions.

Proof. It follows immediately from the Leibnitz rule for differentiation
and the logarithmic convexity of the sequence M = (Mn) , i.e., (1. 3) .

To see that (a) implies (b), we first assume that [J=RI and that
CM (RI) is not quasi-analytic. Then there is a function fECM(RI),
not identically 0, but f,nl (xo) =0, n>O, at some point Xo in RI. Since
CM (RI) is invariant under any affine transformation, we may assume
that xo=O and fez) =0 for some z>O. Define g(x) on RI by setting
g(x) =f(x) for x>O and g(x) =0 for X<O. Then gECM (RI) has its
support in [0,00) and g=t=O. Then the function hex) =g(x)g(2z-x)
satisfies the requirements in (b). That is, (a) implies (b) when [J=
RI. For an arbitrary open set [J in RI, choose a function fECM(RI),
not identically 0, which has a compact support in RI. We may assume
by a suitable affine transformation that f has its support in Q. Then f
is in CM(Q). Finally, let us show that (b) implies (c). Assuming (b),
we can choose a function f in CM(RI), not identically 0, which has

its support in B={xERIllxl<l}. Let us set g(x)=f2/ fR/2dx.

Then gECM(RI) is such that g(x»O, g=t=O, supp gCB and fRIg (x)dx

=1. Let K be any compact subset of Q and choose a number e>O so
small that lx-YI>4e for xEK and y($.Q. Let u(x) be a characteristic
function of K 2.= {yERIlly-x! <2e for some xEK}. Let us define a
function cjJ on RI by

where g.(x) = ~g(x/e).
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Then fj>ECoo(Q) has its support in K 3< and is identically equal to 1
on K.. Lastly, we have fj>ECM (D) since for any x in D and any inte,ger
n>O

Ifj>'n> (x) I= Iu*g/n> I<e-nf Blg~n> Idx«C01r)(Cle-,l)nM~ < '

where Co=Co(B,g) and C1=C1(B,g). It completes the proof of Theore~
1. 2.

When the class CM(D) is not quasi-analytic, the construction of
partition of unity consisting of functions in CM (D) subordinate to any
open covering of D is now a straightforward generalization of theoIie
in Coo-category by the part (c) of Theorem 1. 2. Thus for any non
quasi-analytic class CM(D), one can take the space of functions in CM(D)
with compact support as a space of test functions. With a suitable locally
convex topology on it, C. Roumieu [3J developed the theory of
generalized distributions, which is very much parallel to that of the
usual distributions by L. Schwartz.

2. Quasi-analytic functions

Let us note that unlike quasi-analyticity, a~alyticity can he defined
first for individual functions in D and then they form a subclass A(D)
of Coo(D). It is a -simple matter to free the notion of quasi-analyticity
from the tie with the connection with the given, sequence M= (Mn)' of
positive numbers. We may simply call a subClass S of Coo (D) to b~

quasi-analytic if S has the uniqueness property. Let Q(D) he the union
of all quasi-analytic subclasses of C""'(D). Then a function l(x)ECoo(D)
is in Q(D) if I is either identically equal to' 6 or nowhere flat in
D(/(x) ECoo (D) is flat at xoED if pn> (xo) =0, n>O). Let us consider
the function f(x)=e- 1I%+1 for x>O and =1 for x<O. Then I is i~

Q (D) but f (x) -1 and l' (x) are not in Q (D). That is, the' class Q (a)
is invariant neither under the translation nor under the differentiation.
In .order to remedy such a unnaturalness let us note that the class
CM (0) 'is invariant under the perturbati9n of ;my polynomial since we
may require the estimate (1. 4) to hold for large 'n only without
changing the class CM (D) itsel~. Thus we have:

LEMMA 2. 1. The class CM (Q) is quasi-analytic il and only if any
function I(x) ECM (0) is either a polynomial or -I(x) +p(x) is ',nowhere
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./lat in n for any polynomial p.

Proof. Necessity: If fECM (Q) is a polynomial, then there is nothing
to prove. So, we assume that f is not a polynomial and f +P is flat at
some point X o in Q. Then f+p must be identically 0 in Q since CM([2)
is quasi-analytic. It's a contradition. Sufficiency: If a function fECM ([2)
is flat at some point X o in Q, then it must be a polynomial and so be
identically 0 in Q.

It is trivial that the condition in Lemma 2. 1 is equivalent to that
for any f (x) ECM (Q), we have either f'") is identically 0 for some
n>O or f'1I} (x) is nowhere flat in Q for all n>O. It thus leads to the
following definition:

DEFINITION 2. 1. A function f (x) ECoo (Q) is quasi-analytic in Q if
either f'1I} (x) is identically 0 for some n>O or 1'"} (x) is nowhere flat
in Q for all n>O. Let QA(Q) be the set of all quasi-analytic functions
in Q.

By definition, the class QA (Q) of quasi-analytic functions is now
invariant under the differentiation and the perturbation by any polyno­
mial. It's a proper subclass of COO (Q) which contains A ([2).

For example, any function fEC"" ([2) such that the radius of conver­
gence of its Taylor series at any point of Q is 0 belongs to QA(Q) for
if f,n} (x) is flat for some n>O at some point Xo in n, then its Taylor
expansion at Xo has only finitely many terms, which is a contradiction.
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